首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
朱砂叶螨对氧化乐果、三氯杀螨醇、双甲脒和哒螨灵产生抗性后(抗药性系数分别为152.83倍、55.59倍、62.61倍和15.67倍),繁殖力均显著降低,且发育加速。通过组建各品系生命表得知,该螨抗氧化乐果品系、抗三氯杀螨醇品质、抗双甲脒品系和抗哒螨灵品系的相对适合度分别为0.53、0.62、0.59和0.64,均小于1,具有明显的适合度缺陷。抗药性系数和相对适合度呈直线负相关。  相似文献   

2.
朱砂叶螨敏感品系(S)和抗药性三氯杀螨醇品系(Rd)、抗双甲脒品系(Ra)的各螨态历期在一定温度范围内均随温度的增加而缩短,发育速率对温度敏感性的高低依次为Rd>Ra>S。在相同温度条件下,2个抗药性品系均比敏感品系发育更快。3个朱砂叶螨品系的平均每雌总产卵量与温度的关系,可用二次抛物线方程拟合。在相同温度条件下,2个抗药性品系的生殖力均低于敏感品系,这表明抗药性朱砂叶螨具有生殖不利性。  相似文献   

3.
采用域性状分析法 ,估算了朱砂叶螨对 5种杀螨剂 (3种单剂和 2种混剂 )的抗性现实遗传力 ,并对 5种药剂的抗性风险进行了评估。把采自重庆北碚田间的朱砂叶螨种群 ,在室内不施药情况下饲养 6 0余代 ,以此作为抗性筛选的敏感品系。分别单一连续汰选近 30代 ,朱砂叶螨对甲氰菊酯、阿维菌素、哒螨灵、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)和甲氰 -阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)的抗性分别达 6 5 5 5、5 82、1 2 3、5 2 0和 1 4 2 倍 ;抗性现实遗传力分别为 0 2 16 7、0 0 96 7、0 0 130、0 0 80 0和 0 0 172。在实验室选择条件下 ,预计抗性增长 10倍时 ,甲氰菊酯、阿维菌素、哒螨灵、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)和甲氰 -阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)分别需要 15、34、333、4 2和 2 0 0代。甲氰菊酯抗性风险较高 ,其次是阿维菌素、哒螨 -阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)、甲氰 阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m) ,哒螨灵抗性风险较低。混剂哒螨 阿维 (哒螨灵 :阿维菌素 =7 4 :0 1,m m)不能延缓朱砂叶螨对两单剂哒螨灵和阿维菌素的抗性发展 ,而混剂甲氰 阿维 (甲氰菊酯 :阿维菌素 =8 9:0 1,m m)却能有效延缓朱砂叶螨对两单剂  相似文献   

4.
采用域性状分析法,估算了朱砂叶螨对5种杀螨剂(3种单剂和2种混剂)的抗性现实遗传力,并对5种药剂的抗性风险进行了评估。把采自重庆北碚田间的朱砂叶螨种群,在室内不施药情况下饲养60余代,以此作为抗性筛选的敏感品系。分别单一连续汰选近30代,朱砂叶螨对甲氰菊酯、阿维菌素、哒螨灵、哒螨—阿维(哒螨灵:阿维菌素=7.4:0.1,m/m)和甲氰—阿维(甲氰菊酯:阿维菌素=8.9:0.1,m/m)的抗性分别达65.55、5.82、1.23、5.20和1.42.倍;抗性现实遗传力分别为0.2167、0.0967、0.0130、0.0800和0.0172。在实验室选择条件下,预计抗性增长10倍时,甲氰菊酯、阿维菌素、哒螨灵、哒螨—阿维(哒螨灵:阿维菌素=7.4:0.1,m/m)和甲氰—阿维(甲氰菊酯:阿维菌素=8.9:0.1,m/m)分别需要15、34、333、42和200代。甲氰菊酯抗性风险较高,其余是阿维菌素、哒螨—阿维(哒螨灵:阿维菌素=7.4:0.1,m/m)、甲氰-阿维(甲氰菊酯:阿维菌素=8.9:0.1,m/m),哒螨灵抗性风险较低。混剂哒螨-阿维(哒螨灵:阿维菌素=7.4:0.1,m/m)不能延缓朱砂叶螨对两单剂哒螨灵和阿维菌素的抗性发展,而混剂甲氰-阿维(甲氰菊酯:阿维菌素=8.9:0.1,m/m)却能有效延缓朱砂叶螨对两单剂甲氰菊酯和阿维菌素的抗性发展。  相似文献   

5.
朱砂叶螨抗药性监测   总被引:7,自引:4,他引:3  
陈秋双  赵舒  邹晶  石力  何林 《昆虫知识》2012,49(2):364-369
本文采用药膜法建立了朱砂叶螨Tetranychus cinnabarinus(Boisduval)对5种杀螨剂的敏感基线,并对6个不同地理种群的朱砂叶螨进行了抗药性监测,结果表明:5种药剂杀螨活性由高到低分别为阿维菌素〉丁氟螨酯〉氧化乐果〉炔螨特〉甲氰菊酯,其对朱砂叶螨雌成螨的LC50值分别为0.08、2.19、67.89、201.19和605.27mg/L;朱砂叶螨各地理种群已对甲氰菊酯和炔螨特产生了低、中水平的抗性,其抗性倍数分别介于2.93~16.22与4.85~14.35之间,其中云南种群对这2种杀螨剂抗性最高,对氧化乐果与丁氟螨酯处于敏感性降低阶段,其抗性倍数分别介于2.35~4.26与1.56~2.11之间,对阿维菌素还未产生明显抗性;对阿维菌素和甲氰菊酯的增效剂生物测定结果表明,三类解毒酶系(多功能氧化酶、谷胱甘肽S-转移酶和酯酶)都不同程度地参与了朱砂叶螨抗药性的形成。  相似文献   

6.
山楂叶螨对三氯杀螨醇抗性研究初报   总被引:1,自引:0,他引:1  
采用FAO规定的测定叶螨抗药性的玻片浸渍法,测定了我国北方苹果园的主要害螨——山楂叶螨对三氯杀螨醇的抗性。连续5年使用三氯杀螨醇的试验结果表明,山楂叶螨种群对这种杀螨剂的抗性指数是7.5。抗性种群的异质性明显大于敏感种群。表明抗性种群有形成高抗种群的趋势,像这种类型的果园,应减少三氯杀螨醇的用量,以延缓抗性的发展。  相似文献   

7.
为了对双甲脒进行抗性风险评估, 弄清P450基因在橘全爪螨Panonychus citri抗药性中的作用, 在室内用双甲脒对橘全爪螨进行了抗性选育和交互抗性研究, 同时分析了橘全爪螨双甲脒抗性和敏感品系P450基因表达差异。经过12代抗性选育, 获得了橘全爪螨双甲脒抗性品系, 与敏感品系比较, 橘全爪螨对双甲脒的抗性倍数达到26.32倍。抗性风险评估表明, 橘全爪螨对双甲脒抗性遗传力h2为0.148。螺螨酯、 丁醚脲、 炔螨特和三唑锡对抗性品系的LC50分别为敏感品系的16.85, 4.98, 2.13和2.05倍, 表明双甲脒抗性品系对螺螨酯、 丁醚脲、 炔螨特和三唑锡具有明显的交互抗性。阿维菌素、 苯丁锡、 哒螨灵、 矿物油对抗性品系LC50分别为敏感品系的1.10, 1.21, 0.67和0.99倍, 表明双甲脒抗性品系对上述4种药剂没有显著的交互抗性。基因差异性分析发现, 抗性品系中有16条P450基因发生了上调, 27条P450基因发生了下调, 其中CYP389A6上调倍数最高[log2ratio (RS/SS)=11.526], CYP389A2下调倍数最高[log2ratio(RS/SS) =-12.683], 由此推断, CYP389A6上调和CYP389A2下调可能是橘全爪螨对双甲脒产生抗性的重要原因。  相似文献   

8.
朱砂叶螨对三种杀螨剂的抗性选育与抗性风险评估   总被引:14,自引:3,他引:11  
为评价朱砂叶螨Tetranychus cinnabarinus对3种杀螨剂的抗性风险,在实验室抗性品系选育基础上,应用数量遗传学中的域性状分析法,研究了朱砂叶螨北碚种群对甲氰菊酯、阿维菌素和哒螨灵3种杀螨剂的抗性现实遗传力,并对3种药剂在不同杀死率下抗性发展的速率进行了预测。结果表明:分别单一连续汰选16代后,朱砂叶螨对甲氰菊酯、阿维菌素的抗性倍数分别达26.54和4.51倍,对哒螨灵表现为敏感性降低(抗性倍数为1.16倍);朱砂叶螨对甲氰菊酯、阿维菌素和哒螨灵的抗性现实遗传力分别为0.2472,0.1519和0.0160。在室内选择条件下,杀死率为50%~90%时,要获得10倍抗性,甲氰菊酯仅需要13~6代,阿维菌素需要约21~10代;哒螨灵需要约197~89代;在田间选择,三种药剂都将需要更长的时间。抗性筛选16代结果表明,抗性风险较高的是菊酯类的甲氰菊酯,其次是生物源农药阿维菌素,杂环类的哒螨灵抗性风险较小。试验结果可为朱砂叶螨抗性治理提供参考。  相似文献   

9.
应用数量遗传学的方法分析朱砂叶螨(Tetranychus cinnabarinus)实验种群对甲氰菊酯、阿维菌素及其混剂甲氰—阿维(甲氰菊酯:阿维菌素=8.9:0.1,m/m)的抗性现实遗传力,并测定了甲氰菊酯、阿维菌素分别连续单用、轮换使用、混合使用对朱砂叶螨抗性进化的影响。结果表明,筛选16代后,朱砂叶螨对甲氰菊酯、阿维菌素和甲氰—阿维的抗性现实遗传力分别为0.2853、0.1695和0.0804,朱砂叶螨对混剂的抗性现实遗传力低于对2个单剂的遗传力的一半,混用延缓抗性的效果将好于轮用。药剂连续单用、轮换使用和混合使用16代,朱砂叶螨对甲氰菊酯的抗性分别为28.52、28.03和10.81倍,对阿维菌素的抗性分别为3.24、2.82和1.41倍。朱砂叶螨对2种杀螨剂抗性进化速率为单用>轮用>混用,抗性测定结果表明甲氰菊酯与阿维菌素混用能有效延缓朱砂叶螨对2种药剂抗性的发展速率。  相似文献   

10.
采用玻片浸渍法测定了昆明地区花卉朱砂叶螨Tetranychus cinnabarinus (Boisduval)对阿维菌素、甲氨基阿维菌素苯甲酸盐、溴虫腈、丁醚脲、炔螨特和哒螨灵的抗性.结果表明,昆明北郊和呈贡地区玫瑰上的朱砂叶螨雌成螨对阿维菌素与甲氨基阿维菌素苯甲酸盐产生了极高的抗药性,阿维菌素对2个地区的朱砂叶螨的LC50分别为40.25 mg·L -1和19.67 mg·L-1,相对毒力指数分别为敏感品系的2 441.08倍和1 192.86倍;甲氨基阿维菌素苯甲酸盐对其LC50分别为118.18 mg·L-1和9.24 mg·L-1,相对毒力指数是敏感品系的2 805.73倍和219.35倍.昆明北郊的朱砂叶螨对溴虫腈的相对毒力指数是敏感品系的2 371.40倍,呈贡和晋宁分别为162.01倍和173.38倍.丁醚脲对北郊、呈贡和晋宁朱砂叶螨的LC50分别为244.58 mg·L-1、385.41 mg·L-1和54.93 mg·L-1,相对毒力指数在3.01倍~21.10倍之间.北郊、呈贡和晋宁的朱砂叶螨种群对炔螨特和哒螨灵的LC50分别为155.39 mg·L-1、424.49 mg·L-1和62.70 mg·L-1,其相对毒力指数是敏感品系的6.45倍、17.63倍和2.60倍.朱砂叶螨对药剂抗药性水平趋势从高到低为:阿维菌素、甲氨基阿维菌素苯甲酸盐>溴虫腈、丁醚脲>炔螨特、哒螨灵,抗性最高的地区为昆明北郊,晋宁相对较低.  相似文献   

11.
二斑叶螨对七种杀螨剂的抗药性测定及其机理研究   总被引:3,自引:0,他引:3  
室内测定了相对敏感种群(S)和抗性种群(R)对常用7种杀螨剂的敏感性,并测定了羧酸酯酶、谷胱甘肽S-转移酶和乙酰胆碱酯酶3种酶的比活力。结果表明:二斑叶螨Tetranychus urticae Koch R种群已对甲氰菊酯和哒螨灵产生了抗性,抗性倍数分别为5.45和105.47。其中,甲氰菊酯对雌成螨的毒力最低(>3000mg/L),已远远超过田间推荐剂量,不宜继续使用。酶活测定结果表明:谷胱甘肽S-转移酶解毒活性的提高是二斑叶螨对甲氰菊酯产生抗性的原因之一;二斑叶螨对哒螨灵抗性的增强可能与羧酸酯酶有关。  相似文献   

12.
《Insect Biochemistry》1989,19(8):715-722
The interaction of several formamidine pesticides, chlordimeform (CDM), N-demethylchlordimeform (DCDM) and amitraz with octopamine receptor(s) and the resulting enhancement of cyclic-AMP (cAMP) production in vitro were investigated in the two-spotted spider mite, Tetranychus urticae Koch. DCDM and amitraz clearly stimulated the production of cAMP when added to a homogenate of the spider mite. Among various biogenic amines tested, octopamine and synephrine were most active but dopamine (DA) and 5-hydroxytroptamine showed only marginal potency to elevate cAMP production. An additivity study was devised to find whether these formamidines interact with the same target site as octopamine. The results indicate that all these chemicals act on the same receptor which functions to transduce the signal of certain biogenic amines to elevate the intracellular cAMP level. Phentolamine (PH) and propranolol (PR) showed an antagonistic effect against the portion of cAMP production which was elevated by DCDM. Among pesticides tested, deltamethrin, fenvalerate, DDT and benzenehexachloride showed no such effect, whereas dicofol, chlorobenzilate, parathion and aldicarb showed slight stimulatory effects on cAMP production. Both DCDM and octopamine cause an increase in the phosphorylation of proteins that are also phosphorylated by exogenous cAMP-dependent protein kinase. The results of pharmacological characterization studies confirmed the overall theory that the agonistic effects of formamidines are expressed primarily through the octopamine-sensitive adenylate cyclase.  相似文献   

13.
Six twospotted spider mite populations were assayed for their levels of physiological resistance and behavioral avoidance to residues of four synthetic pesticides. Mortality could not be estimated for bifenthrin and fenvalerate (synthetic pyrethroids) as mites effectively avoided treated surfaces, however significant between-population differences in mortality were detected for chlordimeform and cyhexatin. Considerable variation in walkoff and spindown behavioral response to sub-lethal doses of pesticides was observed among populations within compounds, and within populations among compounds. Within-compound walkoff and spindown behavioral response varied among all mite populations. Few significant between-compound correlations were significant, indicating that spider mites responded differently to the four pesticides. The hypothesis that physiological resistance is negatively correlated with behavioral avoidance was tested. Of the four possible negative correlations between physiological resistance and behavioral avoidance for chlordimeform and cyhexatin, only the correlation between cyhexatin-induced mortality and spindown response was significant. Comparisons of physiological resistance and behavioral avoidance of chlordimeform and cyhexatin by specific pairs of populations did not consistently find these two characters to be related. In a related experiment, the magnitude and direction of the correlation between physiological resistance and behavioral avoidance following selection for increased physiological tolerance to cyhexatin was compared in a highly resistant and a susceptible population of the twospotted spider mite. Mortality in the susceptible population at 2 ppm cyhexatin was similar to mortality in the resistant population at 250 ppm after 72h exposure (ca. 12%). However, at these concentrations, the resistant population exhibited much higher avoidance of the compound through walkoff response.  相似文献   

14.
The African bollworm, Helicoverpa armigera (Hübner), and the cotton red spider mite, Tetranychus spp., are important pests of cotton in Zimbabwe. A study to assess H. armigera resistance to fenvalerate 20 EC (Cyano (3-phenoxyphenyl) methyl 4-chloro-α-(1-methylethyl)benzene acetate) and Tetranychus spp. resistance to amitraz 20 EC (n’-(2,4-dimethylphenyl)-n-[[(2,4-dimethylphenyl)imino]methyl]-n-) was conducted at the Cotton Research Institute (CRI) during the 2005/06 cotton-growing season. Field populations of H. armigera and Tetranychus spp. were collected from some of Zimbabwe’s major cotton-growing areas of Sanyati, Umguza, Chisumbanje, Chinhoyi and the CRI in Kadoma and exposed to bioassays. The African bollworm leaf disc technique and the red spider mite attached leaf-dipping technique were used to assess responses of the African bollworm and red spider mite to the pesticides. Susceptible laboratory populations served as the standard populations and their responses were compared with those of the field populations. The graphical method and MSTAT-C probit analysis computer program were used to calculate LC50 values. Although the CRI field population, used as a reference population for the registration of H. armigera insecticides, had the highest LC50 value (graphical?=?0.000100000; MSTAT-C?=?0.000088195) compared with all the other field populations, overall log-dose probit bioassays on all field-collected strains of the bollworm showed no resistance to the pyrethroid (RFs?=?0.04–0.54-fold). Tetranychus spp. showed very low levels of resistance (RFs?=?1.26–2.00-fold). Continuous monitoring of major cotton pests, especially H. armigera and Tetranychus spp., from all cotton districts of Zimbabwe is vital for early detection of resistance development.  相似文献   

15.
吴元善  任宏涛 《蛛形学报》1996,5(2):101-104
通过田间药剂筛选和防治试验,总结报道了在苹果园应用20%螨死净(Apollo),2.5%天王星(Talstar)、15%扫螨净(Pyridaben)、10%苯丁锡(Fenbutatin oxide)、5%尼索朗(Hexythiazox)和20%灭扫利(Fenpropathrin)防治二斑叶螨的效果及持效期,并且提出了2个关键防治时期。  相似文献   

16.
A laboratory trial evaluated four phytoseiid species for their potential as biological control agents of spruce spider mite, Oligonychus ununguis (Jacobi) (Acari: Tetranychidae). An augmentative biological control approach, using the predatory mites Neoseiulus fallacis Garman and Galendromus occidentalis Nesbitt (Acari: Phytoseiidae), was evaluated for reducing pest mite densities and injury, and economic costs on Juniperus chinensis 'Sargentii' A. Henry (Cupressaceae) in an outdoor nursery. Sequential releases of predator species, individually and in combination, were tested and compared with two commonly used miticides, a low-toxicity miticide, horticultural oil, and a conventional miticide, hexythiazox. Timing of treatments was based on grower-determined need, and predator release rates were based on guidelines in literature received from producers of beneficial organisms. Predator releases were more expensive and provided less effective suppression of spruce spider mites, resulting in greater spider mite injury to plants, compared with conventional pesticides. However, spider mite damage to plants did not differ in an economically meaningful way between treatments. Unsatisfactory levels of control seem related to under estimations of actual spider mite abundance based on grower perceptions and the beat sampling technique used to estimate predator release rates. These data suggest that when initial populations of spruce spider mite are high, it is unlikely that sequential releases of predator species, individually or in combination, will suppress spider mite populations. In this trial, augmentative biological control control was 2.5-7 times more expensive than chemical controls.  相似文献   

17.
The spider mite Tetranychus evansi has a broad range of host plants. Control of T. evansi has been a big challenge to tomato farmers due to its fast rate of reproduction, development of resistance to chemical pesticides and its ability to use weeds as alternative hosts when the tomato plants are not available. The aim of the current study was to determine the host plant acceptance and the relative contributions of trichomes in the control of the red spider mite by comparing the survival, development and oviposition rates of the red spider mite on eight tomato accessions. Leaflets from eight tomato varieties were assayed with the spider mites to determine the egg laying capacity and developmental time of the spider mites on the tomato accessions as well as the trichome densities. Densities of trichome types I, IV, V and VI varied among the tomato accessions. Variation in types I, IV and VI accounted for most of the variation in mite responses. The varieties with high densities of types IV and VI had the highest fecundity and mite development did not go beyond the larval stage. The developmental time varied significantly among the tomato accessions. The results indicated that the higher the density of trichome type I the lower the adult survival. The findings indicated possible resistance of some of the tested tomato accessions against T. evansi which is partially associated with trichomes types and density.  相似文献   

18.
The goal of the research was to study the influence of methyl jasmonate (JA-Me) and beta-glucosidase treatments on fecundity and preference to infestation and oviposition of two-spotted spider mite feeding on strawberry. The experiments were conducted in laboratory conditions on leaves of Aga and Kent cultivars. Leaves were treated with: a. solution of 0.1% JA-Me in 0.05% Triton X-100 (by spraying); b. beta-glucosidase dissolved in 0.1 M citrate buffer at pH 6 (by petiole); c. 0.05% solution of the Triton X-100 (by spraying); d. 0.1 M citrate buffer at pH 6 (by petiole). In the no-choice test, application of JA-Me on leaves of strawberry caused reducing of number of eggs laid during three days of the experiment. In the choice test, which was carried out for determination of non-preference mechanism of resistance, there was a statistically significant lower number of mites on leaves treated with JA-Me compared to leaves treated with other compounds as well as to non-treated leaves after 24 hours from solutions application. Moreover, at the same experiment, females of two-spotted spider mite laid the least number of eggs on leaves treated with JA-Me. Analysis conducted using liquid chromatography method, revealed increase of the level of phenolic compounds like chlorogenic acid and rutin on leaves treated with JA-Me. Thus, it appears that JA-Me may be involved in antybiosis or non-preference mechanisms of resistance of strawberry to two-spotted spider mite.  相似文献   

19.
Queen palm, Livistona rotundifolia foliage contributes greatly in export industry. Red spider mite (RSM) (Tetranychus urticae) infests on the foliage and reduces its affordable market quality. T. urticae is found in dry environment and is one of the phytophagous mite belongs to family Tetranychidae. Different chemicals such as 80% sulphur + Diazinon @ (50g+12ml/10L) are recommended against red spider mite, but these have lesser effect on this tiny mite. Since these chemicals are not environment friendly, Green Farms Ltd., in Sri Lanka prefers to use biological agents for mite management. Extracts of Curcuma aeruginosa rhizome and Adhatoda vasica plant parts were studied separately causing mortality on T. urticae. Field experiments were conducted to study the efficacy of C. aruginosa extract for controlling RSM on L. rotundifolia leaves. Curcuma aruginosa was tested at concentrations of 2, 5, 10, 15, 20 and 25 g/L and a control with equal amount of water. C aruginosa extracts of different concentrations were treated six times at five days interval on the palms separately. Living spider mites and eggs were pre-counted in marked leaves before applying C. aruginosa extracts. Next count was taken a day prior to next spraying. The result revealed that all the concentrations except 2 g/L were found to be effective compared to control. However there was no difference between the concentrations from 5 to 25 g/L. Hence C. aruginosa rhizome extract at its lowest concentration of 5 g/L is equally effective for the control of RSM on L. rotundifolia leaves. In another experiment extracts of Adhatoda vasica bark, leaves, and flower and water as control were applied thrice with three days interval. Pre treatment counting of living spider mites and eggs were taken in marked leaves. Post count was taken a day prior to next spraying. Third and forth counting were done after three days and four weeks from final spraying respectively. The results revealed that bark, flowers were found to be more effective compared to control. Flowers and bark were the best and hence there is no need of third sprayings as almost all the spider mites population were eradicated after second spraying. Flower extraction showed best performance until three months since final spraying. Flower and bark extracts showed higher acaricidal property and leaf showed moderate acaricidal property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号