首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidase-catalyzed oxidation of 2,2-azino-di(3-ethyl-benzthiazolydine-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) is activated by tetrazole and its 5-substituted derivatives--5-amino-(AmT), 5-methyl- (MeT), 5-phenyl- (PhT), and 5-CF3- (CF3-T) tetrazoles. In phosphate-citrate or phosphate buffer (pH 6.4 or 7.2; 20 degrees C), the activating effect of tetrazoles on TMB and ABTS oxidation decreased in the series AmT > MeT > T > PhT > CF3-T and T > AmT > MeT > PhT, respectively. The (coefficient) degree of activation (alpha), expressed in M(-1), determined for both substrates and all activators, depended on substrate type, buffer nature, and pH (it increased as pH increased from 6.4 to 7.2). For TMB oxidation, good correlation between lgalpha and the Hammet constants sigma(meta) for m-substituents in the benzene series NH2, CH3, C6H5, and CF3 was found. It is suggested that AmT, MeT, and T can be used as activators of peroxidase-catalyzed oxidation of TMB and ABTS, as well as in designing peroxidase-based biosensors.  相似文献   

2.
Peroxidase-catalyzed oxidation of 2,2'-azino-di-(3-ethyl-2,3-dihydrobenzthiazoline-6-sulfonate) (ABTS) was competitively inhibited by propyl gallate (PG) and its polydisulfide (PGPDS) at 20 degrees C in 0.015 M phosphate-citrate buffer (pH 6.0). Under these conditions, the values of the inhibition constant (Ki) were equal to 62 and 5.6 microM, respectively, for PG and PGPDS. The stoichiometric inhibition factor (f; the number of radicals extinguished per molecule of an inhibitor) equaled 2.0 and 14.7, respectively, for PG and PGPDS. Peroxidase-catalyzed oxidation of o-phenylenediamine was barely affected by PG or PGPDS. PGPDS may be used as a stop-reagent of peroxidase-catalyzed ABTS oxidation, whereas PG may serve as a calibrating inhibitor in test systems for measurement of total antioxidant activity (in human biological fluids, natural preparations, juices, wines, and other objects).  相似文献   

3.
A comparative kinetic study of the peroxidase oxidation of three chromogenic substrates--2,2'-azino-bis(3-ethyl-2,3-dihydrobenzothiazoline-6-sulfonic acid), o-phenylenediamine (PDA), and 3,3',5,5'-tetramethylbenzidine--inhibited by trimethylhydroquinone and six tert-butylated pyrocatechols (InH) was carried out at 20 degrees C in 0.015 M phosphate-citrate buffer (pH 6.0) containing organic cosolvents (0-10% ethanol or DMF). The inhibitors were quantitatively characterized by the inhibition constants (Ki), the duration of the lag period in the oxidation product formation (delta tau), and the stoichiometric coefficient of inhibition that specifies the number of radicals terminated by one InH molecule (f). The inhibition could be competitive, noncompetitive, mixed, or uncompetitive, which depended on the nature and structure of the chromogenic substrate-diatomic phenol pair. Various substrate-diatomic phenol pairs exhibited Ki values within the range of 11-240 microM and f values from 0.7 to 2.6. The absence of a lag period was characteristic of oxidation of the substituted o-phenylenediamine-substituted pyrocatechol. The total kinetic parameters and properties of the components allowed us to suggest six chromogenic substrate-substituted diatomic phenol pairs for use in test systems for the determination of antioxidant activity in human body fluids, natural biological preparations, and food. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

4.
The peroxidase-catalyzed oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (PDA), and 3,3',5,5'-tetramethylbenzidine (TMB) was found to be activated by tetrazole and 5-aminotetrazole (AT) and weakly inhibited by 1,5-diaminotetrazole. The activating action of tetrazole and AT on the PDA and TMB oxidation was clearly discompetitive and that on ABTS was non-competitive. The coefficients (degrees) of activation alpha were determined for three substrates and two activators; they depended on the substrate type and the buffer nature and increased along with the pH growth from 6.4 to 7.2. For AT and tetrazole, the maximal alpha values were 4140 and 800 M(-1), respectively, upon the PDA oxidation and 3570 and 540 M(-1), respectively, upon the TMB oxidation. Lower alpha values (145 and 58 M(-1) for tetrazole and AT, respectively) were characteristic of the peroxidase oxidation of ABTS. The activation of peroxidase oxidation of the substrates by tetrazole and AT at pH > or = 5.4 was explained by the nucleophilic nature of the activators interacting with the amino acid residues in the peroxidase active site according to the mechanism of acid-base catalysis. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

5.
Peroxidase-catalyzed oxidation of 3-(3,4-dihydroxyphenyl)alanine (DOPA) and its S-cysteinyl derivatives(cysteinyldopas) in the presence of cysteine was studied by analyzing the products with chromatography on Dowex 50W. Products of the oxidation of DOPA were found to be 5-S- and 2-S-cysteinyldopa, 2,5-S,S-dicysteinyldopa, and three unknown compounds A1, B, and C. 5-S- and 2-S-cysteinyldopa were also oxidized as easily as DOPA to give 2,5-S,S-dicysteinyldopa and similar patterns of the unknown compounds. Further oxidation of 2,5-S,S-dicysteinyldopa in the presence of cysteine yielded compounds A1, B, and C, whereas in its absence compound B was not formed. From these results coupled with the spectral data, it is suggested that compounds A1 and C are the two isomeric dihydrobenzothiazine derivatives of 2,5-S,S-dicysteinyldopa, while compound B is 2,5,6-S,S-tricysteinyldopa. These date suggest a possibility that peroxidase may play some role in the formation of cysteinyldopa and related metabolites in vivo.  相似文献   

6.
5-Aminosalicylic acid (5-ASA) inhibited by a mixed mechanism the peroxidase catalyzed oxidation of tetramethylbenzidine (TMB) in 0.015 M phosphate-citrate buffer (pH 6.4) supplemented with 5% DMSO and 5% DMF. Poly(salicylic acid 5-aminodisulfide) (poly(SAADS)) in 0.01 M phosphate buffer (pH 6.2-7.4) supplemented with 5% DMSO and 5% DMF effectively activated the peroxidase-catalyzed oxidation of TMB. The activation was quantitatively characterized by coefficients (M–1) determined at different pH values: increased linearly with increase in pH up to the maximal value of 2.44·105 M–1 at pH 7.0. The activating effect of poly(SAADS) on the peroxidase-catalyzed oxidation of TMB is explained by the activator properties of polyelectrolyte, with its anionic form interacting with peroxidase sites responsible for the acid-base catalysis.  相似文献   

7.
In vitro experiments are reported showing that the dipeptides Tyr-L-Arg (kyotorphin) and Tyr-D-Arg (D-Arg-kyotorphin) can be oxidized by H2O2-horseradish peroxidase system: the products formed are characterized by absorption spectra with two peaks at 290 nm and 315 nm. The effects of substrate and enzyme concentration on the oxidation rate are described. Amino acid analysis of hydrolysates of peroxidase-treated kyotorphins provides evidence for the presence of dityrosine. The data suggest that the oxidation leads to the production of dimers with an o,o-linkage between the tyrosine residues.  相似文献   

8.
9.
The peroxidase-catalyzed oxidation of tyrosine   总被引:6,自引:0,他引:6  
  相似文献   

10.
NADH oxidation and oxygen consumption mediated by 5-iminodaunorubicin and its derivatives have been studied. Experiments were carried out using two enzyme system: microsomes isolated from rat liver and cytochrome c-reductase. All 5-iminoanthracyclines examined were relatively poor electron transfer mediators. In addition, 5-imino-derivatives of daunorubicin modified at sugar moiety were less effective in stimulating NADH oxidation and oxygen radical production than 5-iminodaunorubicin itself. This may be due to the additive effect of 5-imino structure and the presence of bulky substituents at sugar moiety, which might make the compounds poor enzyme substrates.  相似文献   

11.
For the three Gram-negative bacteria, Pseudomonas fluorescens, Escherichia coli, and Erwinia amylovora, p-benzoquinone was the principal bactericidal agent formed in vitro during the oxidation of hydroquinone by horseradish peroxidase, whereas no toxicity could be associated with either phenolic or oxygen-free radicals. Even the continuous generation of p-benzosemiquinone during the simultaneous reduction of p-benzoquinone by xanthine oxidase and reoxidation of hydroquinone by peroxidase was no more toxic than p-benzoquinone alone. Anaerobiosis had no effect on the toxicity of either p-benzoquinone or the peroxidase reaction and the generation of superoxide and hydroxyl radicals catalyzed by xanthine oxidase was not bactericidal. Substitutions on the p-benzoquinone ring decreased quinone toxicity in rough proportion to the decrease in quinone redox potential, suggesting that strong oxidizing potentials are important for such quinone toxicity.  相似文献   

12.
In vitro experiments are reported showing that Leu-enkephalin and Metenkephalin, in the presence of hydrogen peroxide, can be oxidized by horseradish peroxidase. The products formed are strongly fluorescent and characterized by absorption peaks with maxima at 290 nm and 315 nm. The effects of substrate and enzyme concentrations on the oxidation rate of enkephalins are described. Amino acid analysis of the hydrolysates from peroxidase-treated enkephalins provides evidence for the presence of dityrosine. The data suggest that the oxidation leads to the production of enkephalin dimers with a linkage between the N-terminal tyrosine residues. Data are also obtained indicating that enkephalins function as hydrogen donors for mammalian peroxidases.  相似文献   

13.
Mechanism of horseradish peroxidase-catalyzed oxidation of malonaldehyde   总被引:1,自引:0,他引:1  
The mechanism of malonaldehyde oxidation by horseradish peroxidase in the presence of manganese(II) and acetate was investigated. Our results show that an apparent oxygenase behavior demonstrated by peroxidase in this system can be explained in terms of normal peroxidase activity. A free radical is generated from the reaction of malonaldehyde with compounds I and II of peroxidase; this radical is scavenged by dissolved molecular oxygen to give the appearance of peroxidase acting as an oxygenase. Oxygen consumption, absorbance spectra, and kinetic results show that the reaction is initiated by autoxidation of malonaldehyde to give a free radical. The radical reacts with oxygen and through the action of manganese(II), a peroxide is generated. This peroxide drives the peroxidase cycle to generate more free radicals which propagate the oxygen consumption reaction.  相似文献   

14.
15.
Currently, the basic method of treatment of colon cancer is surgery. The range of anticancer drugs used in the treatment of colorectal cancer is small and is based mainly on systemic combination chemotherapy. As a result of the designed syntheses, we received new isothiazole derivatives with anticancer activity. The synthesized 5-hydrazino-3-methylisothiazole-4-carboxylic acid has never been obtained before. It is also a substrate for the synthesis of its innovative derivatives, i.e. compounds that are Schiff bases. The identification of the structure of new compounds was carried out using mass spectrometry (MS), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance spectroscopy (13C NMR) and infrared spectroscopy (IR). Potential antitumor activity was confirmed in antiproliferative MTT and SRB tests. The selected, most biologically active substances were characterized by high selectivity towards leukemia and colon cancer cell lines. They caused high inhibition of proliferation of human biphenotypic B cell myelomonocytic leukemia MV4-11 (13 compounds), human colon adenocarcinoma cell lines sensitive LoVo (8 compounds) and resistant to doxorubicin LoVo/DX (12 compounds). However, in the conducted studies, their activity against breast adenocarcinoma MCF-7 and normal non-tumorigenic epithelial cell line derived from mammary gland MCF-10A was substantially lower. The result of this work is claimed Polish patent application.  相似文献   

16.
The use of 4-methylumbelliferyl phosphate (MUP) and ortho-nitrophenyl-beta-D-galactopyranoside (ONPG) for the identification of Clostridium perfringens was investigated. A liquid assay containing both MUP and ONPG was a highly specific alternative method for C. perfringens confirmation, reducing incubation time from 48 to only 4 h. The assay solution is easy to prepare, does not require anaerobic conditions for use, and has an extended shelf life.  相似文献   

17.
Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers   总被引:2,自引:0,他引:2  
Banci L  Ciofi-Baffoni S  Tien M 《Biochemistry》1999,38(10):3205-3210
The oxidation of phenolic oligomers by lignin and manganese peroxidases was studied by transient-state kinetic methods. The reactivity of peroxidase intermediates compound I and compound II was studied with the phenol guaiacol along with a beta-O-4 phenolic dimer, trimer, and tetramer. Compound I of both peroxidases is much more reactive than compound II. The rate constants for these substrates with Mn peroxidase compound I range from 1.0 x 10(5) M-1 s-1 for guaiacol to 1.1 x 10(3) M-1 s-1 for the tetramer. Reactivity is much higher with lignin peroxidase compound I with rate constants ranging from 1.2 x 10(6) M-1s-1 for guaiacol to 3.6 x 10(5) M-1 s-1 for the tetramer. Rate constants with compound II are much lower with Mn peroxidase exhibiting very little reactivity. The rate constants dramatically decreased with both peroxidases as the size of the substrate increased. The extent of the decrease was much more dramatic with Mn peroxidase, leading us to conclude that, despite its ability to oxidize phenols, Mn2+ is the only physiologically significant substrate. The rate decrease associated with increasing substrate size was more gradual with lignin peroxidase. These data indicate that whereas Mn peroxidase cannot efficiently directly oxidize the lignin polymer, lignin peroxidase is well suited for direct oxidation of polymeric lignin.  相似文献   

18.

Background  

Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs) and N-aryl-N-hydroxy urethanes (AHUs) revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar.  相似文献   

19.
The monocations of a few 5-substituted cytidines have been shown to undergo competitive deamination to the corresponding uridines and hydrolysis to 5-substituted cytosines and D-ribose. The first-order rate constants measured at different temperatures indicate that the proportion of the hydrolysis is considerably increased with the increasing temperature. Electron-withdrawal by a polar substituent at C5 appears to facilitate the hydrolysis to a larger extent that the deamination. The ionic strength has practically no influence on the rate of either reaction.  相似文献   

20.
Kinetic constants (Km,Kcat) are derived for the hydrolysis of a number of chromogenic peptide substrates by the aspartic proteinase from HIV-2. The effect of systematic replacement of the P2 residue on substrate hydrolysis by HIV-1 and HIV-2 proteinases is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号