首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uptake of 35S-labelled sulfate was studied with two sulfate-reducing bacteria, the freshwater species Desulfobulbus propionicus and the marine species Desulfococcus multivorans. Both bacteria were able to highly accumulate micromolar additions (2.5 M) of sulfate, if the reduction of sulfate to H2S was prevented by low temperature (0° C) or oxygen. Sulfate accumulation was highest (accumulation factors 103 to 104) after growth under sulfate-limiting conditions, while cells grown with excess sulfate revealed accumulation factors below 300. With increasing sulfate concentrations added (up to 25 mM), the accumulation factors decreased down to 1.4. Sulfate accumulation in both strains was sensitive to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and thiocyanate, but not directly correlated to the ATP content of the cells. Pasteurized cells did not accumulate sulfate. Sulfate transport was reversible. Accumulated 35S-labelled sulfate was quickly released after addition of non-labelled sulfate or structural sulfate analogues (thiosulfate, selenate, chromate, less effect by molybdate, tungstate, sulfite, selenite). In D. propionicus, sulfate accumulation was independent of the presence or absence of Na+, K+, Li+, Mg2+, Cl- and Br-. Sulfate accumulation was reversibly enhanced at pH 5 and diminished at pH 9. In the marine bacterium D. multivorans, sulfate accumulation depended on the presence of Na+ ions. Na+ could partially be replaced by Li+. Sulfate accumulation in D. multivorans was sensitive to the Na+/H+ antiporter monensin and the Na+/H+ antiport inhibitor amiloride. It is concluded that in D. propionicus sulfate is accumulated electrogenically in symport with at least three protons, whereas for D. multivorans electrogenic symport with sodium ions is proposed. In both species, more than one sulfate transport system must be present. High affinity transport systems appear to be derepressed under sulfate limitation only. The high affinity transport system must be regulated to avoid energy-spoiling accumulation at high sulfate concentrations.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide  相似文献   

2.
Selenocysteine-containing proteins in mammals   总被引:12,自引:0,他引:12  
Since the recent discovery of selenocysteine as the 21st amino acid in protein, the field of selenium biology has rapidly expanded. Twelve mammalian selenoproteins have been characterized to date and each contains selenocysteine that is incorporated in response to specific UGA code words. These selenoproteins have different cellular functions, but in those selenoproteins for which the function is known, selenocysteine is located at the active center. The presence of selenocysteine at critical sites in naturally occurring selenoproteins provides an explanation for the important role of selenium in human health and development. This review describes known mammalian selenoproteins and discusses recent developments and future directions in the selenium field.  相似文献   

3.
Methanogenic enrichment cultures with isobutyrate as sole source of carbon and energy were inoculated with sediment and sludge samples from freshwater and marine origin. Over more than 20 transfers, these cultures fermented 2 mol isobutyrate with 1 mol CO2 via an intermediate formation of n-butyrate to 4 mol acetate and 1 mol CH4. The primary isobutyrate-fermenting bacteria could not be purified. From one of the marine enrichment cultures, a sulfate-reducing bacterium was isolated which oxidized isobutyrate with sulfate completely to CO2. Based on its physiological and morphological properties, this strain was assigned to the known species Desulfococcus multivorans. It also oxidized many other fatty acids without significant release of short-chain intermedeates. The enzymes involved in isobutyrate degradation by this bacterium were assayed in cell-free extracts. The results indicate that isobutyrate is activated to its CoA derivative and oxidized via methylmalonate semialdehyde to propionyl-CoA. Propionyl-CoA is further converted via the methylmalonyl-CoA pathway to acetyl-CoA which is finally cleaved by the CO-dehydrogenase system. It is evident that this is not the pathway used by the fermenting bacteria prevailing in the methanogenic enrichment cultures. There results are discussed on the basis of energetical considerations.  相似文献   

4.
Selenocysteine-containing proteins from rat and monkey plasma   总被引:1,自引:0,他引:1  
This investigation was carried out to determine whether a selenium-containing plasma protein in rat and monkey (Macaca mulata) plasma might be involved in selenium transport. Injection of [75Se]selenite or [75Se]selenomethionine was used to label a plasma protein. The native molecular weight of the protein from rat and monkey plasma was determined by gel filtration to be about 80 000. The molecular weight of a selenium-containing polypeptide prepared from the protein was about 45 000, as determined by gel filtration in the presence of sodium dodecyl sulfate. Selenium was attached to both the rat and monkey plasma protein in the form of the amino acid selenocysteine. The proportion of plasma selenium normally bound to the rat protein in vivo was less than 5%, and the half-life of selenium bound to the protein was a few hours. These findings are consistent with a selenium-transport function for this protein.  相似文献   

5.
Tetrachloroethene metabolism of Dehalospirillum multivorans   总被引:4,自引:0,他引:4  
Dehalospirillum multivorans is a strictly anaerobic bacterium that is able to dechlorinate tetrachloroethene (perchloroethylene; PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (DCE) as part of its energy metabolism. The present communication describes some features of the dechlorination reaction in growing cultures, cell suspensions, and cell extracts of D. multivorans. Cell suspensions catalyzed the reductive dechlorination of PCE with pyruvate as electron donor at specific rates of up to 150 nmol (chloride released) min-1 (mg cell protein)-1 (300 M PCE initially, pH 7.5, 25°C). The rate of dechlorination depended on the PCE concentration; concentrations higher than 300 M inhibited dehalogenation. The temperature optimum was between 25 and 30°C; the pH optimum at about 7.5. Dehalogenation was sensitive to potential alternative electron acceptors such as fumarate or sulfur; nitrate or sulfate had no significant effect on PCE reduction. Propyl iodide (50 M) almost completely inhibited the dehalogenation of PCE in cell suspensions. Cell extracts mediated the dehalogenation of PCE and of TCE with reduced methyl viologen as the electron donor at specific rates of up to 0.5 mol (chloride released) min-1 (mg protein).-1 An abiotic reductive dehalogenation could be excluded since cell extracts heated for 10 min at 95°C were inactive. The PCE dehalogenase was recovered in the soluble cell fraction after ultracentrifugation. The enzyme was not inactivated by oxygen.Abbreviations PCE Perchloroethylene or tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - CHC Chlorinated hydrocarbon - MV Methyl viologen  相似文献   

6.
7.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

8.
The role of benzoate in anaerobic degradation of terephthalate   总被引:14,自引:0,他引:14  
The effects of acetate, benzoate, and periods without substrate on the anaerobic degradation of terephthalate (1, 4-benzene-dicarboxylate) by a syntrophic methanogenic culture were studied. The culture had been enriched on terephthalate and was capable of benzoate degradation without a lag phase. When incubated with a mixture of benzoate and terephthalate, subsequent degradation with preference for benzoate was observed. Both benzoate and acetate inhibited the anaerobic degradation of terephthalate. The observed inhibition is partially irreversible, resulting in a decrease (or even a complete loss) of the terephthalate-degrading activity after complete degradation of benzoate or acetate. Irreversible inhibition was characteristic for terephthalate degradation only because the inhibition of benzoate degradation by acetate could well be described by reversible noncompetitive product inhibition. Terephthalate degradation was furthermore irreversibly inhibited by periods without substrate of only a few hours. The inhibition of terephthalate degradation due to periods without substrate could be overcome through incubation of the culture with a mixture of benzoate and terephthalate. In this case no influence of a period without substrate was observed. Based on these observations it is postulated that decarboxylation of terephthalate, resulting in the formation of benzoate, is strictly dependent on the concomitant fermentation of benzoate. In the presence of higher concentrations of benzoate, however, benzoate is the favored substrate over terephthalate, and the culture loses its ability to degrade terephthalate. In order to overcome the inhibition of terephthalate degradation by benzoate and acetate, a two-stage reactor system is suggested for the treatment of wastewater generated during terephthalic acid production.  相似文献   

9.
10.
Tetrachloroethene (C2Cl4) dechlorination kinetics in upflow anaerobic sludge blanket (UASB) reactors was determined after introducing de novo activities into the granular sludge. These activities were introduced by immobilizing Dehalospirillum multivorans in a test reactor containing unsterile granular sludge, and in a reference reactor, R1, containing sterile granular sludge. A second reference reactor, R2, contained only unsterile granular sludge and served as a control. The kinetic experiments were performed by pulsing the reactors with C2Cl4 in a recirculating batch mode. Formate and acetate were added as electron donor and carbon source. Both reactors inoculated with D. multivorans dechlorinated C2Cl4 to an equimolar amount of C2H2Cl2 with only traces of C2HCl3 in the effluent. In the control reactor, C2HCl3 accumulated before C2H2Cl2 was produced. A computer simulation program (AQUASIM) was used to estimate the kinetic parameters. The half-saturation constants (K s) for C2Cl4 and C2HCl3 were almost equal in the reactors containing D.␣multivorans (17 μM and 18 μM for C2Cl4; 26 μM and 28 μM for C2HCl3), indicating no influence of sludge bacteria on the affinity of D. multivorans for C2Cl4 and C2HCl3. The maximum dechlorination rates (k m X B) were about twice as high in the reactor containing D.␣multivorans immobilized in sterile sludge (11 mmol C2Cl4 l sludge−1 day−1 and 27 mmol C2HCl3 l sludge−1 day−1) than in the test reactor (4.4 mmol C2Cl4 l sludge−1 day−1 and 15 mmol C2HCl3 l sludge−1 day−1). Compared to other C2Cl4-degrading systems, the dechlorination rates of the inoculated reactors and their affinities for C2Cl4 and C2HCl3 were high. Therefore, introduction of de novo activity is promising for the use of anaerobic reactors to bioremediate C2Cl4-polluted water. Received: 5 November 1998 / Received revision: 25 January 1999 / Accepted: 31 January 1999  相似文献   

11.
The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones.  相似文献   

12.
An anaerobic, motile, gram-negative, rod-shaped, syntrophic, benzoate-degrading bacterium, strain SB, was isolated in pure culture with crotonate as the energy source. Benzoate was degraded only in association with an H2-using bacterium. The kinetics of benzoate degradation by cell suspensions of strain SB in coculture with Desulfovibrio strain G-11 was studied by using progress curve analysis. The coculture degraded benzoate to a threshold concentration of 214 nM to 6.5 microM, with no further benzoate degradation observed even after extended incubation times. The value of the threshold depended on the amount of benzoate added and, consequently, the amount of acetate produced. The addition of sodium acetate, but not that of sodium chloride, affected the threshold value; higher acetate concentrations resulted in higher threshold values for benzoate. When a cell suspension that had reached a threshold benzoate concentration was reamended with benzoate, benzoate was used without a lag. The hydrogen partial pressure was very low and formate was not detected in cell suspensions that had degraded benzoate to a threshold value. The Gibbs free energy change calculations showed that the degradation of benzoate was favorable when the threshold was reached. These studies showed that the threshold for benzoate degradation was not caused by nutritional limitations, the loss of metabolic activity, or inhibition by hydrogen or formate. The data are consistent with a thermodynamic explanation for the existence of a threshold, but a kinetic explanation based on acetate inhibition may also account for the existence of a threshold.  相似文献   

13.
Moraxella sp. isolated from soil grows anaerobically on benzoate by nitrate respiration; nitrate or nitrite are obligatory electron acceptors, being reduced to molecular N2 during the catabolism of the substrate. This bacterium also grows aerobically on benzoate. 2. Aerobically, benzoate is metabolized by ortho cleavage of catechol followed by the beta-oxoadipate pathway. 3. Cells of Moraxella grown anaerobically on benzoate are devoid of ortho and meta cleavage enzymes; cyclohexanecarboxylate and 2-hydroxycyclohexanecarboxylate were detected in the anaerobic culture fluid. 4. [ring-U-14C]Benzoate, incubated anaerobically with cells in nitrate-phosphate buffer, gave rise to labelled 2-hydroxycyclohexanecarboxylate and adipate. When [carboxy-14C]benzoate was used, 2-hydroxycyclohexanecarboxylate was radioactive but the adipate was not labelled. A decarboxylation reaction intervenes at some stage between these two metabolites. 5. The anaerobic metabolism of benzoate by Moraxella sp. through nitrate respiration takes place by the reductive pathway (Dutton & Evans, 1969). Hydrogenation of the aromatic ring probably occurs via cyclohexa-2,5-dienecarboxylate and cyclohex-1-enecarboxylate to give cyclohexanecarboxylate. The biochemistry of this reductive process remains unclear. 6. CoA thiol esterification of cyclohexanecarboxylate followed by beta-oxidation via the unsaturated and hydroxy esters, would afford 2-oxocyclohexanecarboxylate. Subsequent events in the Moraxella culture differ from those occurring with Rhodopseudomonas palustris; decarboxylation precedes hydrolytic cleavage of the alicyclic ring to produce adipate in the former, whereas in the latter the keto ester undergoes direct hydrolytic fission to pimelate.  相似文献   

14.
Summary The benzoate metabolism of Aspergillus niger was studied as part of a design to clone the benzoate-4-hydroxylase gene of this fungus on the basis of complementation. Filtration enrichment techniques yielded mutants defective for different steps of benzoate degradation: bph (benzoate-4-hydroxylase), phh (4-hydroxybenzoate-3-hydroxylase) and prc (protocatechuate ring cleavage) mutants. In this way the degradation pathway for benzoate, involving the formation of 4-hydroxybenzoate and 3,4-dihydroxybenzoate has been confirmed. In addition a mutant sensitive to benzoate has been found. Complementation tests in somatic diploids showed that the bph mutants belonged to two complementation groups. The major group is probably defective in the structural gene (bphA). All phh mutants tested belonged to one complementation group. The prc mutants could be divided into several groups on the basis of their growth on different aromatic substrates and on the basis of the complementation test. The phh and both bph mutations are shown to be located on different chromosomes.Offprint requests to: C. J. Bos  相似文献   

15.
Major parts of the virulence-associated vrl locus known from the gammaproteobacterium Dichelobacter nodosus, the causative agent of ovine footrot, were analyzed in the genome of the sulfate-reducing deltaproteobacterium Desulfococcus multivorans. In the genome of D. multivorans 13 of the 19 vrl genes described for D. nodosus are present and highly conserved with respect to gene sequence and order. The vrl locus and its flanking regions suggest a bacteriophage-mediated transfer into the genome of D. multivorans. Comparative analysis of the deduced Vrl proteins reveals a wide distribution of parts of the virulence-associated vrl locus in distantly related bacteria. Horizontal transfer is suggested as driving mechanism for the circulation of the vrl genes in bacteria. Except for the vrlBMN genes D. multivorans and Desulfovibrio desulfuricans G20 together contain all vrl genes displaying a high degree of similarity. For D. multivorans it could be shown that guanine plus cytosine (GC) content, GC skew, di-, tri- or tetranucleotide distribution did not differ between the vrl locus and its flanking sequences. This could be a hint that the vrl locus originated from a related organism or at least a genome with similar characteristics. The conspicuous high degree of conservation of the analyzed vrl genes may result from a recent transfer event or reflect a function of the vrl genes, which is still unknown and not necessarily disease associated. The latter is supported by the evidence for expression of the vrl genes in D. multivorans, which has not been described as pathogen or to be associated to any disease pattern before.  相似文献   

16.
Abstract Teltrachloroethylene (PCE) was biotransformed by reductive dehalgenation under anoxic conditions with benzoate as the electron donor. The experiments were carried out under batch culture conditions with biomass from an anoxic fixed bed reactor fed with benzoate and PCE. Inhibition of methanogenesis by bromoethane-sulfonic acid (BES) resulted in a complete inhibition of benzoate degradation. Benzoate, however, was decomposed in the presence of BES if PCE was added to the cultures. With 2.8 mmol/1 PCE, that was transformed to 1.4 mmol/1 cis-1,2-dichloroethylene (DCE) and 3.8 mmol/1 chloride, 2 mmol/1 benzoate were degraded to about 3.2 mmol/1 acetate. The elimination of benzoate was directly proportional to DCE accumulation, ranging between 1:0.5 and 1:1.  相似文献   

17.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

18.
Citrate metabolism in anaerobic bacteria   总被引:4,自引:0,他引:4  
Abstract The regulation of anaerobic citrate metabolism is very diverse among different groups of bacteria. In organisms like Streptococcus lactis and Clostridium sporosphaeroides which lack citrate synthase, the activity of its antagonistic enzyme, citrate lyase, need not be regulated. Many anaerobes like Rhodocyclus gelatinosus and Clostridium sphenoides are able to synthesize their own l -glutamate and contain citrate synthase. In these bacteria the activity of citrate metabolizing enzymes which are involved in a cascade system are under strict control. In Rc. gelatinosus activation/inactivation of citrate lyase is controlled by acetylation/deacetylation which is catalyzed by its corresponding regulatory enzymes, citrate lyase ligase and citrate lyase deacetylase. In C. sphenoides inactivation of citrate lyase is accomplished by deacetylation as well as by changing in the enzyme conformation. Activation of citrate lyase is catalyzed by citrate lyase ligase whose activity in addition is modulated by phosphorylation/dephosphorylation. Further, electron transport process also seems to play a role in the inactivation of citrate metabolizing enzymes in enteric bacteria.  相似文献   

19.
Alkali-treated extracts of Rhodopseudomonas palustris growing photosynthetically on benzoate were examined by gas chromatography/mass spectrometry for partially reduced benzoate derivatives. Two cyclic dienes, cyclohexa-2,5-diene-1-carboxylate and cyclohexa-1,4-diene-1-carboxylate, were detected. Either compound supported cell growth as effectively as benzoate. These results suggest that these cyclohexadienecarboxylates, probably as their coenzyme A esters, are the initial reduction products formed during anaerobic benzoate metabolism by R. palustris.  相似文献   

20.
Anaerobic phenol transformation was studied using a consortium which transformed phenol to benzoate without complete mineralization of benzoate. Products of monofluorophenol transformation indicated para-carboxylation. Phenol and benzoate were detected during para-hydroxybenzoate (p-OHB) degradation. p-OHB was detected in phenol-transforming cultures containing 6-hydroxynicotinic acid (6-OHNA), a structural analogue of p-OHB, or at elevated initial concentrations of phenol (greater than or equal to 5 mM), or benzoate (greater than or equal to 10 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号