首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

3.
In Dictyostelium discoideum both cyclic AMP and cyclic GMP are regulated by chemotactic stimuli. Binding proteins specific for cAMP and cGMP have been found in aggregation competent cells as well as in cells harvested during growth. The activity of binding proteins was, on the average, lower in the growth phase cells. cAMP binding proteins were separated into 3 fractions, whereas the cGMP binding activity appeared in 1 major peak both on DEAE-cellulose and Sephadex G-200. Protein kinase activity was present in most but not all cyclic necleotide binding fractions; evidence for a relationship is however missing.  相似文献   

4.
5.
Repeated pulses of cyclic AMP, applied at intervals of 5 min, efficiently induced differentiation in cells of agip 53, a morphogenetic mutant of Dictyostelium discoideum, strain Ax-2. In contrast, pulses applied at intervals of 2 min did not induce cell differentiation. To analyze this phenomenon the hydrolysis of cyclic AMP between the pulses as well as the effect of the pulses on the intracellular concentrations of cyclic GMP were investigated. Experiments performed in the presence of added cyclic AMP was not the reason of the inefficiency of the pulses applied with a 2-min rhythm. Cyclic AMP pulses applied at intervals of 2 min induced discrete increases of the cyclic GMP concentration. Limited time resolution at the level of cyclic GMP cannot account for the inefficiency of the 2-min pulses.  相似文献   

6.
Repeated pulses of cyclic AMP, applied at intervals of 5 min, efficiently induced differentiation in cells of agip 53, a morphogenetic mutant of Dictyostelium discoideum, strain Ax-2. In contrast, pulses applied at intervals of 2 min did not induce cell differentiation. To analyze this phenomenon the hydrolysis of cyclic AMP between the pulses as well as the effect of the pulses on the intracellular concentration of cyclic GMP were investigated. Experiments performed in the presence of added cyclic AMP phosphodiesterase revealed that incomplete hydrolysis of cyclic AMP was not the reason for the inefficiency of the pulses applied with a 2-min rhythm. Cyclic AMP pulses applied at intervals of 2 min induced discrete increases of the cyclic GMP concentration. Limited time resolution at the level of cyclic GMP cannot account for the inefficiency of the 2-min pulses.Based on material presented at the Symposium Intercellular Communication Stuttgart, September 16–17, 1982  相似文献   

7.
Responsiveness of Dictyostelium discoideum amoebae to cAMP, a chemotactic mediator, was investigated in a strain defective in cAMP-phosphodiesterase production. Cells were subjected to a high cAMP signal (10(-6) M) in the presence or absence of exogenous phosphodiesterase, and the changes of intracellular cAMP and cGMP concentrations and of adenylate cyclase activity were measured. In the presence of cAMP hydrolysis, both adenylate and guanylate cyclases are transiently activated. In the absence of hydrolysis, the high and constant extracellular cAMP concentration is sufficient to elicit a re-activation of adenylate cyclase a few minutes after the first transient response. In contrast, levels of cGMP remain basal for at least 20 min after termination of the initial response to the cAMP addition.  相似文献   

8.
Aggregating Dictyostelium discoideum cells possess highly specific receptors for the chemoattractant cAMP on their cell surface. Isolated membranes as well as intact cells are shown to contain a large number of latent cAMP receptors. These are reversibly unmasked in the presence of a high salt concentration (0.1–2 M) or in the presence of millimolar concentrations of Ca2+.  相似文献   

9.
10.
We have recently identified a cell surface cAMP-binding protein by specific photoaffinity labeling of intact Dictyostelium discoideum cells with 8-N3-[32P] cAMP. The major photolabeled protein appears as a doublet (Mr = 40,000-43,000) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. In this study, the doublet is shown to have the characteristics of the cAMP receptor responsible for chemotaxis and cAMP signaling. Both specific photoaffinity labeling of the doublet and binding of 8-N3-[32P]cAMP are saturable (KD = 0.3 microM), the levels of both peak at 5 h, and both are inhibited by cAMP and several cAMP analogs in the same order of potency and with K1 values similar to those measured for inhibition of [3H]cAMP binding. When cAMP-binding activity was partially purified (40-fold) and then photoaffinity labeled, the same bands (Mr = 40,000-43,000) were observed. The relative intensities of the upper and lower bands of the doublet alternated at the same frequency as the spontaneous oscillations in cAMP synthesis. When oscillations were suppressed, the lower band of the doublet predominated. Following addition of cAMP, the relative intensity gradually shifted to the upper band. When cAMP was removed, there was a gradual restoration of the lower band form. We propose that the lower band form of the receptor activates chemotaxis and cAMP signaling and that the upper band form does not. This reversible receptor modification may then be the mechanism of adaptation, the process by which the physiological responses cease to be stimulated by persistent cAMP. Several developmentally regulated genes in D. discoideum have been reported to be induced or suppressed by pulses of cAMP (adaptive regulation) and others by continuous cAMP (nonadaptive regulation). These observations may be explained by the receptor modification reported here if the two forms of the receptor, which bind cAMP with the same affinity, independently influence gene expression.  相似文献   

11.
12.
We have previously reported the detection of cAMP waves within monolayers of aggregating Dictyostelium discoideum cells (K. J. Tomchik and P.N. Devreotes, 1981, Science 212, 443-446). The computer-assisted analysis presented here of the fluorographic images of the cAMP waves reveals (1) all the waves have a consistent width and height; (2) cAMP concentrations within centers of concentric aggregation territories oscillate periodically while at spiral centers the concentration builds up to a plateau value within 2 mm; (3) cells within the region of intersection of two oppositely directed cAMP waves are stimulated to produce more cAMP than those responding to a single wave; (4) cells start to move when the cAMP level begins to increase and cease movement when the peak cAMP concentration reaches the cell.  相似文献   

13.
14.
When amoebae of Dictyostelium discoideum, suspended in buffer, were treated with 100 nM pulses of cAMP, the extracellular cAMP phosphodiesterase (ePD) activity increased dramatically and the synthesis of the phosphodiesterase inhibitor (PDI) was repressed. In addition, the time of appearance on the cell surface of contact sites A, membrane-bound cAMP phosphodiesterase, and cAMP binding sites was accelerated by 3–4 hr and the concentration of intracellular cAMP increased ?20-fold. When the concentration of the cAMP pulse was reduced to 1 nM, the effect of the pulses on membrane differentiation and on the cAMP pool was virtually the same, while the effect on the ePD-PDI system was reduced. When cAMP was added to the suspension continuously, the nucleotide had no effect on membrane differentiation and failed to stimulate the intracellular cAMP pool, however, the ePD-PDI system was regulated normally. When the developmental mutant, HC112, was treated with cAMP pulses, membrane differentiation and the level of the cAMP pool were unaffected, while the ePD-PDI system responded to the exogenous cAMP. In another mutant, HC53, membrane differentiation was stimulated by cAMP pulses and this response was accompanied by a sharp increase in the concentration of the cAMP pool. These results suggest that the ePD-PDI system and membrane differentiation are regulated independently by exogenous cAMP and that regulation of the ePD-PDI system does not require activation of the adenylyl cyclase.  相似文献   

15.
16.
The intracellular distribution of phosphodiesterase [EC 3.1.4.17] induced by cyclic adenosine 3',5'-monophosphate (cAMP) in Dictyostelium discoideum was studied. When cAMP-treated cells were homogenized and fractionated according to the method of de Duve et al. ((1955) Biochem, J. 60, 604), the specific activity of phosphodiesterase was highest in the light mitochondrial fraction. Peaks of specific activities of alkaline phosphatase (marker enzyme of membrane) and catalase (marker enzyme of peroxisomes) also appeared in the same fraction as phosphodiesterase. However, after centrifugation of the light mitochondrial fraction in a sucrose density gradient, the activity of phosphodiesterase was clearly separated with that of catalase (density 1.19 g/ml) and showed three peaks at lower density (1.10, 1.13, 1.17 g/ml) with good reproducibility. Some parts (1.13, 1.17 g/ml) of the activity in the gradient overlapped with alkaline phosphatase activity, but in the density fraction of 1.10 g/ml the activity of alkaline phosphatase was hardly detectable. When the light mitochondrial fraction was treated with Emulgen 108, or sonicated, phosphodiesterase was more easily solubilized than alkaline phosphatase and catalase, and was found in supernate after centrifugation at 20,000 X g for 30 min. In order to distinguish the locations of the three enzymes, the supernatant of the light mitochondrial fraction treated with Emulgen 108 was subjected to charge shift electrophoresis. The electrophoretic mobilities of phosphodiesterase and catalase were unaffected by ionic detergent. However, alkaline phosphatase shifted towards the anode in the presence of anionic detergent (sodium deoxycholate), and shifted towards the cathode in cationic detergent (cetyltrimethylammonium bromide), relative to nonionic detergent (Emulgen 108) alone. Thus, some part of the phosphodiesterase induced by cAMP may be associated with the plasma membrane, but the remainder is localized in some kind of intracellular particle of lower density. Moreover, the association with the membrane or particle is more easily dissociated than that of alkaline phosphatase, and the liberated phosphodiesterase is rather hydrophilic.  相似文献   

17.
Repeated additions of cyclic AMP to a morphogenetic mutant of Dictyostelium discoideum, agip 53, induced cell differentiation to the aggregation competent state as previously reported [Darmon, Brachet, and Pereira da Silva (1975). Proc. Nat. Acad. Sci. USA72, 3163–3166]. Cyclic AMP additions elicited transient increases of the intracellular cyclic GMP concentration but no significant increases of the intracellular cyclic AMP concentration. These results suggest that transient increases of the intracellular cyclic AMP concentration are not necessary for cell differentiation. Agip 53 seems to be unable to relay cyclic AMP signals. A defect in the receptor-mediated activation of adenylate cyclase could be the biochemical basis of the mutant phenotype of agip 53.  相似文献   

18.
19.
20.
Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号