首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. We studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [35S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.  相似文献   

2.
In the presence of the antibiotic tunicamycin (TM), glycosylation of herpes simplex virus glycoproteins is inhibited and non-glycosylated polypeptides analogous to the glycoproteins are synthesized (Pizer et al., J. Virol. 34:142-153, 1980). The synthesis of viral proteins and DNA occurs in TM-treated cells. By electron microscopy, nucleocapsids can be observed both in the nucleus and the cytoplasm of TM-treated cells; a small number of enveloped virions were observed on the cell surface. Analyses of the proteins in partially purified virus readily detects viral glycoproteins in the control cells, but neither glycoproteins nor nonglycosylated polypeptide analogs were observed in the virus prepared from TM-treated cells. By labeling the surface of infected cells with 125I, viral glycoproteins were detected as soon as 90 min after infection even when protein synthesis was inhibited with cycloheximide and glycosylation was blocked with TM. Labeling the proteins synthesized in infected cells with [35S]methionine showed that the surface glycoproteins detected in the cycloheximide- and TM-treated cells were not synthesized de novo after infection, but were placed on the cell surface by the infecting virus. Studies with metabolic inhibitors and a temperature-sensitive mutant blocked early in the infectious cycle showed that glycoproteins gA/gB and gD were synthesized soon after infection, but that the synthesis of gC was delayed. Under conditions of infection, in which gC and its precursor pgC are not produced, we have been able to observe the relationships between the glycosylated polypeptides that correspond to pgA/pgB and the nonglycosylated analog made in the presence of TM.  相似文献   

3.
Two-dimensional gel electrophoresis was used to analyze the effects of water stress (immobilization and rapid drying, desiccation, rewetting) on the protein index of the desiccation-tolerant cyanobacteriumNostoc commune UTEX 584. Five major landmark protein constellations were detected in the protein index of control cells (in liquid culture) and were designated A (1 protein), B (7 proteins), C (8 proteins), D (3 proteins) and E (2 proteins). These included proteins which showed different sensitivities to water stress. Upon immobilization and rapid drying of the cells at a water potential ({ie87-1}) of -99.5 MPa (aw=0.5) for 30 min, few changes took place in the index. Four conspicuous proteins and the majority of proteins in the size range 18 to 97 K diminished in abundance while most proteins of constellations A, B and C were detected in fluorographs with the same intensity as in the control. Although protein synthesis continued during this time of drying, no novel class of proteins was detected. The level of incorporation of35S in protein increased rapidly during the first 60 min of rehydration, and then decreased gradually for a further 2.5 h. Extant proteins that were hardly detectable after 24 h of drying, reappeared and increased in abundance upon rewetting of cells for 60 min while a number of proteins which disappeared after drying did not appear during this time. No novel class of proteins appeared upon rewetting. During further rehydration, extensive proteolysis was observed.ThenifH product (Fe protein of nitrogenase) was detected on Western blots — through cross-reaction with antibody — as an acidic polypeptide with a molecular mass of 33.8 K. Fe-protein was detected in immobilized cells after 30 min of drying, in desiccated material, and in rehydrated cells.Abbreviations PMSF Phenylmethylsulfonyl fluoride - IEF Isoelectric focussing  相似文献   

4.
Epstein-Barr virus superinfection of the human lymphoblastoid cell line Raji, a Burkitt lymphoma-derived line that contains Epstein-Barr virus genomes in an episomal form, results in the sequential synthesis of 29 detectable proteins, which range in molecular weight from approximately 155,000 to 21,000, and in the shutoff of the bulk of host protein synthesis within 6 to 9 h after infection. There are three classes of virus-induced proteins; these are an early class, consisting of eight proteins synthesized by 6 h postinfection, an intermediate class, containing two proteins synthesized 9 h postinfection, and a late class, consisting of five proteins synthesized 12 h postinfection. In addition, there is a fourth class of polypeptides, called persistent, that are found both before and after superinfection. The rates of synthesis of the proteins fall into three patterns; these are pattern A, in which the rate of synthesis decreases, pattern B, in which the rate of synthesis remains steady, and pattern C, in which the rate of synthesis increases after the initial appearance of the polypeptide. Both 9-(2-hydroxy-ethoxymethyl)guanine (acyclovir) and phosphonoacetic acid inhibit the appearance of one intermediate protein and at least three late proteins. Seven polypeptides are phosphorylated at different times after infection.  相似文献   

5.
The first event after infection with mouse hepatitis virus strain A59 (MHV-A59) is presumed to be the synthesis of an RNA-dependent RNA polymerase from the input genomic RNA. The synthesis and processing of this putative polymerase protein was studied in a cell-free translation system utilizing 60S RNA from MHV-A59 virions. The polypeptide products of this reaction included two major species of 220 and 28 kilodaltons. Kinetics experiments indicated that both p220 and p28 appeared after 60 min of incubation and that protein p28 was synthesized initially as the N-terminal portion of a larger precursor protein. When the cell-free translation products were labeled with N-formyl[35S]methionyl-tRNAi, p28 was the predominant radioactive product, confirming its N-terminal location within a precursor protein. Translation in the presence of the protease inhibitors leupeptin and ZnCl2 resulted in the disappearance of p28 and p220 and the appearance of a new protein, p250. This product, which approached the maximal size predicted for a protein synthesized from genomic RNA, was not routinely detected in the absence of inhibitors even under conditions which optimized the translation reaction for elongation of proteins. Subsequent chelation of ZnCl2 resulted in the partial cleavage of the precursor protein and the reappearance of p28. One-dimensional peptide mapping with Staphylococcus aureus V-8 protease confirmed the precursor-product relationship of p250 and p28. The results show that MHV virion RNA, like many other viral RNAs, is translated into a large polyprotein, which is cleaved soon after synthesis into smaller, presumably functional proteins. This is in marked contrast to the synthesis of other MHV proteins, in which minimal proteolytic processing occurs.  相似文献   

6.
In the cytoplasm of eucaryotic cells, mRNA is associated with proteins. These mRNA-protein complexes, termed messenger ribonucleoprotein (mRNP) particles, are divided into two functional classes. The first class contains free (non-ribosome-associated) mRNPs which have been termed informosomes by others. The second class of mRNPs, those associated with polysomes, are actively engaged in protein synthesis and are termed polysomal mRNPs. The experiments described in this paper examined the proteins associated with polyribosomes in uninfected and herpes simplex virus type 1-infected cells. The data indicate that after infection with herpes simplex virus type 1, specific changes occur in the proteins which normally are found associated with these polysomal mRNPs. These changes include both the appearance of new and possibly virus-specific proteins and the loss of normal host-specific proteins. The relationship of these changes to the patterns of protein synthesis in these cells is also discussed.  相似文献   

7.
The T4 mot gene regulates middle mode RNA synthesis in phage-infected cells. The mot gene product has been identified in two ways. (i) Infections with amber and temperature-sensitive mot mutants both lead to the disappearance of a number of protein bands on SDS-polyacrylamide gels. These are middle mode proteins whose synthesis depends on mot function. The mot protein disappears from such gels after infection with a mot amber mutant, but not with the mot missense mutant. (ii) This same protein is the only one to have a charge alteration when proteins from wild-type phage and mot missense mutant infections are compared by two-dimensional gel electrophoresis. Mot protein is basic and has a mol. wt. of 24 000. It migrates between the positions of gp 1 and gp IPIII on 15% SDS-polyacrylamide gels. Mot protein synthesis begins immediately after infection and continues until 4 min after infection at 30 degrees C, after which time it is strongly inhibited. This inhibition depends neither on T4 DNA synthesis nor on ADP ribosylation of the alpha subunits of the Escherichia coli RNA polymerase. The mot protein does not regulate its own biosynthesis. It is stable throughout the course of infection.  相似文献   

8.
The structural proteins of mature LPP-1 particles and the patterns of protein synthesis after LPP-1 infection have been examined by electrophoresis on sodium dodecyl sulfate polyacrylamide gels. Structural proteins account for 35% of the LPP-1 genome, and proteins that would require about 65% of the total coding capacity have been detected after infection. The major head proteins have molecular weights of 39,000 and 13,000, whereas the major tail protein is an 80,000-molecular-weight species. Host protein synthesis is depressed soon after infection and appears to be entirely shut off by 5 hr. Three classes of viral proteins are distinguished in infected cells, based on their time course of synthesis and their presence in mature virions.  相似文献   

9.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

10.
11.
The gene II region of bacteriophage f1 DNA codes for two proteins, the 46 kd gene II protein and the 13 kd gene X protein, which results from an in-phase start at codon 300 of gene II. Using antigens II protein IgG, we show that the intracellular concentration of both proteins is controlled by the phage gene V protein. In wild-type f1-infected cells, the amount of gene II protein reaches a plateau of about 1500 molecules per cell at 20 min after infection, as measured by blot immunoassay. Similarly, the amount of gene X protein reaches a peak of about 500 molecules per cell around 10 min after infection. In contrast, when the gene V protein is inactive, both gene II and gene X proteins continue to accumulate at a high rate for at least 40 min after infection. This difference is caused by decreased synthesis of gene II and gene X proteins in the presence of gene V protein, which represses the translation of these two proteins.  相似文献   

12.
13.
The conidia of Neurospora crassa entered logarithmic growth after a 1-h lag period at 30 degrees C. Although [14C]leucine is incorporated quickly early in growth, cellular protein data indicated that no net protein synthesis occurred until after 2 h of growth. Neurospora is known to produce ethanol during germination even though respiratory enzymes are present. Also, Neurospora mitochondria isolated from cells less than 3-h old are uncoupled. Since oxygen uptake increased during germination, was largely cyanide-sensitive, and reached a maximum at 3 h, it is hypothesized that during early germination the uncoupled electron transport chain merely functions to dispose of reducing equivalents generated by substrate level ATP production. The rate of protein synthesis in vitro by mitochondria isolated from 0-8-h-old cells increased as did cell age. Mitochondrial protein synthesis in vivo, assayed in the presence of 100 mug cycloheximide/ml, increased from low levels in the cinidia to peak levels at 3-4 h of age and then slowly decreased. The rate of mitochondrial protein synthesis in vivo was linear for at least 90 min in 0-4-h-old cells, but declined after 15 min of incorporation in 6 and 8-h-old cells. The products of mitochondrial protein synthesis in vivo were analyzed with dodecylsulfate gel electrophoresis and autoradiography. Early in germination 80% of the synthesis was of two small proteins (molecular weights 7200 and 9000). At 8 h 85% of the radioactivity was in 10 larger proteins (12 200 to 80 000). Within the high-molecular-weight class, proteins of between 12 000 and 21 500 molecular weight were preferentially lavelled early in germination, whereas after 8 h of growth proteins of 27 500 to 80 000 molecular weight were preferentially labelled. It is hypothesized that the 7200 and 9000-molecular-weight products of mitochondrial protein synthesis combine with other proteins to form the larger proteins found later in growth. The availability of these other proteins in cells of different ages could affect the rate of mitochondrial protein synthesis in vivo.  相似文献   

14.
Proteins that associate with cellular membrane during the first 5 min after infection with bacteriophage T4 were examined. Several procedures, including electrophoretic separations in three sodium dodecyl sulfate polyacrylamide gel systems and inhibition of host protein synthesis by UV irradiation, were employed to distinguish host-specified proteins from those induced by T4. Residual host protein synthesis was found to account for much of the new protein in preparations of the total membrane and for almost all of the newly synthesized protein in the outer membrane. Preliminary evidence indicates that the synthesis of some host membrane proteins is shut off less rapidly than is host synthesis of soluble protein. One host-directed polypeptide of the outer membrane was unique in that its synthesis or incorporation into the membrane was preferentially inhibited by infection. Also, it was found that the detergent Sarkosyl solubilizes all early T4 membrane proteins; this observation provides the basis for a simple procedure for distinguishing phage proteins from host outer membrane proteins.  相似文献   

15.
The synthesis of membrane protein after infection with bacteriophage T4 was examined. Protein constituents of both the cytoplasmic and outer membrane are made during the infective cycle. In addition, newly synthesized membrane protein is found in material which has a buoyant density greater than that of either of the two host membrane fractions. Polyacrylamide gel analyses and solubilization studies using the detergent Sarkosyl indicate that synthesis of most of the membrane proteins made during the first 5 min of infection is directed by bacterial genes. New membrane proteins synthesized at times greater than 6 min after infection appear to be distinct from those of the host, and new proteins of the outer membrane are different from those of the inner. Proteins in the new dense membrane fraction are similar to those of the outer membrane.  相似文献   

16.
Double-labeling techniques in which (14)C-labeled, phiX174-infected cells and (3)H-labeled, uninfected cells were used permitted the identification of the virus-specific proteins after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis without prior inhibition of host-cell protein synthesis by ultraviolet irradiation. It was also possible to detect previously undescribed components of high molecular weight which may represent induced host proteins. The gel regions specifically corresponding to cistron II protein and the chloramphenicol-resistant VI protein were identified, and a third new, small peak of unknown origin was detected. Studies of the rate of synthesis of virus-specific proteins at various times after infection indicated that the product of cistron I (lysis) is made only late in infection, but the other proteins seemed to be synthesized at the same relative rates throughout infection (although in different amounts). Studies of the proteins obtained from uniformly labeled phiX virus particles indicated that all of the spikes are identical and allowed a formulation of the structure of the phage capsid.  相似文献   

17.
Flagellar regeneration in gametes of Chlamydomonas reinhardi is initiated within 15–20 min after flagellar amputation and proceeds at a rapid but decelerating rate until by 90 min flagellar outgrowth is 80–85% complete. Sufficient flagellar protein reserves exist in the cytoplasm to allow regeneration of flagella 1312 normal length. Nevertheless, in vivo labeling with 14C-amino acids shows that microtubule protein and other flagellar proteins are synthesized de novo during flagellar regeneration. To determine whether tubulin is synthesized continuously by gametic cells or whether its synthesis is induced as a consequence of deflagellation, we have isolated polyribosomes from deflagellated and control cells, and analyzed the proteins produced by these polyribosomes during in vitro translation. Two proteins of 53,000 and 56,000 molecular weight which co-migrate with flagellar and chick brain tubulin on SDS-polyacrylamide gels and which selectively co-assemble with chick brain tubulin during in vitro microtubule assembly are synthesized by polyribosomes (or polyadenylated mRNA) from deflagellated cells. No microtubule proteins can be detected in the translation products synthesized by polyribosomes (or mRNA) from control cells, clearly indicating that deflagellation results in the induction of tubulin synthesis.Kinetics of tubulin synthesis demonstrate that induction takes place immediately after deflagellation; polyribosomes bearing tubulin mRNA can be detected in the cytoplasm in as little as 15 min after removal of flagella. Maximal rates of tubulin synthesis occur between 45 and 90 min after deflagellation when approximately 14% of the protein being synthesized by the cell is tubulin. This estimate of tubulin synthesis based on in vitro translation data agrees well with in vivo measurements of flagellar tubulin synthesis. While high levels of tubulin production extend well beyond the period of rapid flagellar assembly, synthesis begins to decline after 90 min, and by 180 min after deflagellation only low levels of tubulin mRNA are detectable in polyribosomes.  相似文献   

18.
Temperature-sensitive (ts) mutants of the T4 phage rII gene were islated and used in temperature shift experiments that revelaed two different expressions for the normal rII (rII+) gene function in vivo: (i) an early expression (0 to 12 min postinfection at 30 C) that prevents restriction of T4 growth in Escherichia coli hosts lysogenic for gamma phage, and (ii) a later expression (12 to 18 min postinfection at 30 C) that results in restriction of T4 growth when the phage DNA ligase (gene 30) is missing. The earlier expression appeared to coincide with the period of synthesis of the protein product of the T4 rIIA cistron, whereas the later expression occurred after rIIA protein synthesis had stopped. The synthesis of the protein product of the rIIB cistron continues for several minutes after rIIA protein synthesis ceases (O'Farrell and Gold, 1973). The two rII+ gene expressions might require different molar ratios of the rIIA and rIIB proteins. It is possible that the separate expressions of rII+ gene function are manifestations of different associations between the two rII proteins and other T4-induced proteins that are synthesized or activated at different times after phage infection.  相似文献   

19.
In cultured Drosophila melanogaster cells, vesicular stomatitis virus (VSV) established a persistent, noncytopathic infection. No inhibition of host protein synthesis occurred even though all cells were initially infected. No defective interfering particles were detected, which would explain the establishment of the carrier state. In studies of the time course of viral protein synthesis in Drosophila cells, N, NS, and M viral polypeptides were readily detected within 1 h of infection. The yield of G protein and one of its precursors; G1, was very low at any time of the virus cycle; the released viruses always contained four to five times less G than those produced by chicken embryo cells, whatever the VSV strain or serotype used for infection and whatever the Drosophila cell line used as host. Actinomycin D added to the cells before infection enhanced VSV growth up to eight times. G and G1 synthesis increased much more than that of the other viral proteins when the cells were pretreated with the drug; nevertheless, the released viruses exhibited the same deficiency in G protein as the VSV released from untreated cells. Host cell control on both G-protein maturation process and synthesis at traduction level is discussed in relation to G biological properties.  相似文献   

20.
Nuclear membrane fractions were prepared by two procedures from KB cells pulse labeled with [(3)H]thymidine for 5 min late after infection with adenovirus 2: (i) the M-band technique, which yields a sharp peak containing most of the newly synthesized viral DNA, and (ii) the discontinuous sucrose gradient method, which yields three membrane fractions, one which bands at the interface between sucrose layers at density 1.18 and 1.20 g/ml and contains most of the newly synthesized viral DNA. Studies using cycloheximide to inhibit protein synthesis showed that proteins whose synthesis begins early after infection and occurs in the absence of viral DNA replication are required for viral DNA synthesis late after infection. To study the nature of these proteins, nuclear membrane fractions were isolated from cells labeled with [(3)H]leucine from 6 to 24 h postinfection in the presence of arabinosyl cytosine to block viral DNA replication, and were analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide gels. Two proteins of molecular weights 75,000 and 45,000 were the major labeled polypeptides in the nuclear membrane fractions prepared from infected cells both by the M-band and the discontinuous sucrose gradient methods. These two proteins were not found in nuclear membrane fractions from uninfected cells. It is suggested that the 75,000 and 45,000 proteins may be early viral gene products that may play a role in the viral DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号