首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to check if Substance P (SP) is released from the hypothalamus into the hypophysial portal vessels and by this route exerts its direct influence on the adenohypophysis. For this purpose SP radioimmunoactivity was assayed in the blood plasma collected from hypophysial portal vessels and from the cephalic end of the external jugular vein. The SP levels in blood plasma collected from hypophysial portal vessels and from the jugular vein do not differ significantly. Neither does application of a noxious factor, such as bilateral femoral bone fracture, change significantly the SP level in the blood plasma from portal vessels and from the jugular vein. Hypoxia seems to increase the SP level in portal blood plasma and may be followed by its decrease. It is concluded that hypothalamic SP is not released into the hypophysial portal vessels under normal conditions and its direct influence on the adenohypophysis is not mediated this way.  相似文献   

2.
The vascularization of the brain and the pituitary region of the Australian lungfish, Neoceratodus forsteri is described from serial section reconstruction. The distal lobe has no direct arterial blood supply and receives blood solely from a pituitary portal system basically similar to that of other sarcopterygians. The primary capillary plexus of the median eminence receives its arterial blood from the infundibular arteries, which on their way distribute some small branches to the prechiasmatic region. The primary plexus also receives capillaries from the adjacent pial hypothalamic plexus. The primary capillary plexus of the median eminence comprises a rostral 'uncovered' and caudal 'covered' part which are not sharply delineated. Distinct portal vessels connect the 'uncovered' rostral part of the primary plexus with the secondary capillary plexus supplying the rostral subdivision of the pars distalis. The 'covered' caudal part of the primary plexus merges into the proximal subdivision of the pars distalis, apparently without formation of distinct portal vessels. The primary plexus has some connections with the plexus intermedius via a hypophysial stem capillary plexus. The plexus intermedius has a substantial arterial supply and gives off capillaries to the parenchyma of the pars intermedia. The adenohypophysis is drained into an unpaired hypophysial vein. The significance of the vascular pathways is discussed from comparative, functional, and evolutionary viewpoints.  相似文献   

3.
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.  相似文献   

4.
We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 +/- 0.5 to 12.0 +/- 0.9 mmHg (n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 +/- 0.3 to 1.2 +/- 0.1 ml/min (n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 +/- 5.5 to 95 +/- 4 mmHg). Splenic afferent nerve activity increased (5.6 +/- 0.9 to 16.2 +/- 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 +/- 0.1 to 1.0 +/- 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.  相似文献   

5.
S I Said  J C Porter 《Life sciences》1979,24(3):227-230
Immunoreactive vasoactive intestinal polypeptide (VIP) was present in portal hypophyseal blood of 24 male rats in concentrations (mean, 995 pg per ml) that were approximately 19 times as high as those in systemic arterial blood (mean, 52 pg per ml). The results demonstrate release of VIP from the hypothalamic-neurohypophyseal complex into the portal circulation, and establish a mechanism for direct influence of the peptide on pituitary function.  相似文献   

6.
To examine the role of cardiopulmonary receptors in arterial blood pressure regulation during and after exercise, conscious dogs with chronic sinoaortic denervation were subjected to 12 min of light exercise and 12 min of exercise that increased in severity every 3 min. Hemodynamic measurements were made before and after interruption of cardiopulmonary afferents by bilateral cervical vagotomy. During both exercise protocols, after an initial transient decrease, the arterial blood pressure remained close to resting values before and after vagotomy. On cessation of the graded exercise, the arterial blood pressure did not change before, but a rapid and sustained increase in pressure occurred after vagotomy. At the time of this increase the cardiac output and heart rate were returning rapidly to the resting level. The study demonstrates that in the chronic absence of arterial baroreflexes, vagal afferents prevent a rise in arterial blood pressure after vigorous exercise presumably by the action of cardiopulmonary receptors causing a rapid dilatation of systemic resistance vessels.  相似文献   

7.
The hypothalamo-hypophysial vascular relationship and intra-hypophysial vasculatisation have been described in order to understand the regulatory mechanism of hypothalamic control over the functions of the pituitary gland. In Glossogobius giuris, the disposition of the blood vessels in the head region is on typical teleostean pattern with certain modifications. The nucleus preopticus is supplied through the nucleus preopticus artery, a small blood vessel arising from the anterior branch of the posterior cerebral artery, whereas the pituitary gland receives blood through a pair of hypophysial arteries. The blood from the pituitary is drained off by the pituitary veins whch pour their blood into the supra-orbital sinus. The anterior cerebral vein after taking the blood from anterior part of the brain including the hypothalamus and the nucleus preopticus joins with the supra-orbital sinus. The hypothalamo-hypophysial portal system is absent in this fish. The saccus vasculosus receives blood from the posterior cerebral artery through a small blood vessel and is collected by a prominent saccus vasculosus vein which pours blood into the supra-orbital sinus before it joins the infra-orbital sinus to form the heat vein. There seems to be no physological connection between the saccus vasculosus and pituitary gland. The highly vascularised neurohypophysis interdigitate with the pars intermedia and extends upto the proximal pars distalis. The blood vessels are restricted to the neurohypophysial extensions only. However, in the rostral pars distalis the blood vessels are present but the neurohypophysis does not extend to this part. The blood capillaries enter the rostral pars distalis from the capillary network on the surface of pituitary gland along with the connected tissue covering of the pituitary. The neurohypophysis shows a greater vascularisation in comparison to that of the other glandular part of the pituitary gland. In the present study of Glossogobius giuris, though an extensive ramification of neurohypophysis occurs with the pars intermedia and the proximal pars distalis, the neurosecretory axons do not innervate the endocrine cells of the pituitary gland and the blood vessels are found restricted to the neurohypophysial extensions except that of the rostral pars distalis. The neuro-vascular way of hypothalamic control over the functions of the pituitary gland seems to be justified as the neurosecretory fibres have been found associated with the blood vessels.  相似文献   

8.
K Takaori  K Inoue  M Kogire  R Doi  S Sumi  M Yun  N Fujii  H Yajima  T Tobe 《Life sciences》1989,44(10):667-672
Physalaemin has been reported as one of the most potent vasodilator and hypotensive peptides (1-4). In spite of these studies, however, the effect of the peptide on splanchnic circulation is not known precisely. In the present study, the effect of synthetic physalaemin on superior mesenteric arterial blood flow, portal venous blood flow and pancreatic capillary blood flow was investigated in dogs. Dose dependent increases of superior mesenteric arterial blood flow and portal venous blood flow were induced in response to physalaemin (0.1-10.0 ng/kg). Superior mesenteric arterial blood flow and portal venous blood flow attained maximal increases of 77 +/- 8.9% and 70 +/- 8.6%, respectively, at a dose of 5 ng/kg. Physalaemin caused a dose-related decrease in systemic arterial blood pressure. Pancreatic capillary blood flow did not show significant change with the administration of physalaemin. These data suggest that physalaemin may play some physiological roles in the regulation of splanchnic circulation.  相似文献   

9.
Cerebral vessels in the premature newborn brain are well supplied with adrenergic nerves, stemming from the superior cervical ganglia (SCG), but their role in regulation of blood flow remains uncertain. To test this function twelve premature or two-week-old lambs were instrumented with laser Doppler flow probes in the parietal cortices to measure changes in blood flow during changes in systemic blood pressure and electrical stimulation of the SCG. In lambs delivered prematurely at ∼129 days gestation cerebral perfusion and driving pressure demonstrated a direct linear relationship throughout the physiologic range, indicating lack of autoregulation. In contrast, in lambs two-weeks of age, surgical removal of one SCG resulted in ipsilateral loss of autoregulation during pronounced hypertension. Electrical stimulation of one SCG elicited unilateral increases in cerebral resistance to blood flow in both pre-term and two-week-old lambs, indicating functioning neural pathways in the instrumented, anesthetized lambs. We conclude cerebral autoregulation is non-functional in preterm lambs following cesarean delivery. Adrenergic control of cerebral vascular resistance becomes effective in newborn lambs within two-weeks after birth but SCG-dependent autoregulation is essential only during pronounced hypertension, well above the normal range of blood pressure.  相似文献   

10.
In urethane-chloralose anaesthesia the pituitary gland was exposed by transpharyngeal approach in rats. The anterior lobe was removed and the posterior lobe was incubated in situ, that is in conditions of anatomical integrity of the hypothalamus with the posterior pituitary lobe. The 15-min samples of the medium incubating the posterior pituitary lobe in situ were collected. Vasopressin (AVP) content in the incubation medium was determined by radioimmunoassay. The stimulation of preganglionic fibers of the superior cervical ganglion (SCG) with alternate short (5 s) bursts of electric pulses with short (5 s) breaks did not change AVP release. However, stimulation of preganglionic fibres with alternate long (30 s) bursts of electric pulses with long (30 s) breaks evoked an increase in AVP release after some latency. Probably, at the hypothalamic or posterior pituitary level temporal summation should occur affecting vasopressinergic neurons or their endings and evoking AVP release.  相似文献   

11.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

12.
Superior mesenteric arterial (SMA) blood flow was measured in pentobarbital-anesthetized cats using a noncannulating electromagnetic flowprobe. The selective adenosine antagonist 8-phenyltheophylline (8-PT) antagonized the dilator effect of infused adenosine but not isoproterenol. The vasodilation in response to reduced arterial perfusion pressure (autoregulation) was blocked by the adenosine receptor blockade, which also reduced the degree of postocclusive (1 min) hyperemia by one-half to two-thirds. The remainder of the hyperemia may have been due partially to adenosine, since exogenous adenosine still produced a small vasodilation (26%), so effects of endogenous adenosine could also still be expected to exert a small effect. Myogenic effects appear unlikely to be the mechanism of the small remaining hyperemia, since venous pressure increments within physiologically relevant ranges did not cause altered SMA conductance, and arterial dilation in response to large decreases in arterial pressure could be blocked by adenosine antagonism. Portal pressure was increased using hepatic nerve stimulation (8 Hz) to raise pressure from 7.0 to 12.4 mmHg (1 mmHg = 133.3 Pa). The small vasoconstriction seen in the SMA was due to the rise in systemic blood pressure, since prevention of a rise in SMA pressure prevented the response and 8-PT blocked the response (previously shown to block arterial pressure-flow autoregulation). An equal rise in PVP imposed by partial occlusion of the portal vein did not lead to changes in SMA vascular conductance. Thus, we conclude that within physiologically relevant ranges of arterial and portal venous pressure, the SMA does not show myogenic responses of the resistance vessels.  相似文献   

13.
The hypothalamic regulation of ACTH secretion has been reviewed. Recent biochemical investigations on corticotropin-releasing factor (CRF) suggest that CRF is present in the hypothalamus under two or more different molecular weight forms, their structure being not elucidated yet. Vasopressin has a CRF-like activity. However, contradictory results have been reported on the role of AVP as a physiological CRF. The synthesis of CRF appears to occur in a large hypothalamic area outside the median eminence. CRF-carrying fibers are thought to pass through the lateral retrochiasmatic area and project on the hypophysial portal vessels at the junction between the pituitary stalk and the median eminence. Conflicting data have been published on the influence of monoamines on ACTH secretion. In the dog, ACTH release is inhibited by the alpha-adrenergic receptors, this effect being not as clearly demonstrated in other species. The stimulation of nicotinic and muscarinic receptors followed by increased ACTH secretion. Glucocorticoids appear to lower ACTH secretion through an action at both the hypothalamic and pituitary levels.  相似文献   

14.
Matched hypothalamo-pituitary portal and jugular blood samples were collected over about 6 h from 7 lactating Corriedale ewes penned with their lambs, and a careful record was kept of ewe/lamb behaviour. Hypothalamo-pituitary portal blood concentrations of beta-endorphin were measured by radioimmunoassay and the secretion rates were calculated; these were related to peripheral plasma prolactin and LH concentrations, and the sucking bouts of the lambs. Basal LH concentrations remained less than 1 ng/ml with 0-2 pulses of 1.5-3.5 ng/ml amplitude per 6-h collection period. Prolactin secretion was episodic with individual baselines varying from 24 to 286 ng/ml, and peak concentrations of 50-631 ng/ml. Portal beta-endorphin was secreted in an episodic pattern with individual baseline secretion rates varying from 0.125 to 0.495 ng/min, and peak secretion rates of 0.768 to 3.216 ng/min. A close correlation was seen between sucking bouts and the secretion of portal beta-endorphin and peripheral prolactin; 86% of sucking bouts resulted in a significant release of beta-endorphin, and 46% of sucking bouts resulted in a significant release of prolactin. These results show that hypothalamic beta-endorphin is released in response to the sucking stimulus. This provides support for the hypothesis that, during lactation, beta-endorphin acts within the hypothalamus to reduce GnRH release and hence depress pituitary gonadotrophin secretion.  相似文献   

15.
H Dietl 《Life sciences》1988,43(4):317-324
The effect of experimentally induced blood pressure changes on the in vivo release of neuronal corticosterone in limbic and hypothalamic areas was studied in anaesthetized rats. A fall of the arterial blood pressure (ABP) elicited by the intravenous (i.v.) injection of the vasodilatator nitroprusside or the ganglionic blocking agent chlorisondamine decreased the release of corticosterone in the central amygdala (AC) and the ventral hippocampus (VH) whereas an experimentally induced hypertension after i.v. administration of the alpha adrenoreceptoragonist tramazoline led to an enhanced release of the glucocorticoid in the limbic areas mentioned above. Alterations in ABP did not affect the rates of corticosterone release in the medial hypothalamus (MH). The results may indicate a functional role for neuronal limbic corticosterone in central blood pressure regulation.  相似文献   

16.
The present study was undertaken to investigate hepatic microcirculatory response following partial portal vein ligation (PPVL) in rats. Portal pressure was markedly increased 2-6 wk after PPVL, but no significant reduction in sinusoidal perfusion and hepatocellular injury were detected. However, marked neovascularization was observed in PPVL rats using intravital microscopy and scanning electron microscopy (SEM). Extremely high red blood cell velocity (2,000-4,900 microm/s) was seen in these vessels. Injection of fluorescein sodium via the carotid artery revealed that the neovessels originated from the hepatic arterial vasculature. This was further confirmed by clamping the common hepatic artery and phenylephrine injection from the carotid artery. These vessels maintained sufficient flow after massive sinusoidal shutdown elicited by the portal infusion of endothelin receptor B agonist IRL-1620. SEM also showed extensive neovascularization at the hilum. Additionally, clamping the portal vein decreased sinusoidal perfusion only by 9.5% in PPVL, whereas a 71.2% decrease was observed in sham. These results strongly suggest that the liver maintains its microcirculatory flow by vascular remodeling from the hepatic arterial vasculature following PPVL.  相似文献   

17.
Mechanisms of action of sodium cromoglycate   总被引:2,自引:0,他引:2  
The effects of sodium cromoglycate (SCG) on cardiovascular and pulmonary responses to phenylbiguanide, capsaicin, and vagal stimulation were studied in anesthetized guinea pigs. Phenylbiguanide had no bronchospastic activity but induced reflex changes in arterial blood pressure which were reduced or abolished by SCG. Capsaicin induced nonreflex bronchospasm, and decreases in arterial blood pressure that were unaffected by SCG. Sodium cromoglycate, given before or after atropine, had no effect on the bronchospasm and cardiovascular responses to unilateral or bilateral stimulation of the vagus nerves. We conclude that SCG may influence both the afferent and efferent pathways of responses to drugs.  相似文献   

18.
M C Yang  P C Yu  M S Tu  C S Lay  C Y Hong  C K Chou  C F Chen  J S Kuo 《Life sciences》1990,46(26):1929-1936
Endothelin is a vasoconstrictor peptide which has recently been isolated and sequenced from the vascular endothelial cells. It was reported to increase blood pressure in vivo and produce a prolonged contraction with a slow onset in vitro. The purpose of this study was to investigate whether endothelin can lower the portal pressure as another endogenous vasoconstriction peptidevasopressin (AVP) can. Heart rate, systemic blood pressure, portal pressure, and portal vein blood flow were measured. Effects of endothelin on these parameters were compared with those of AVP. Endothelin 10(-10) mol/Kg significantly decreased all of the parameters mentioned. At the higher dose (5 x 10(-10) mol/Kg), however, the portal pressure and blood pressure were increased and portal vein blood flow was unchanged. On the other hand, AVP decreased the portal pressure and portal vein blood flow but elevated the systemic blood pressure. In vitro experiments revealed that endothelin contracted both tail artery and portal vein of rat and vasopressin contracted only tail artery. We concluded that although both are endogenous vasoconstricting peptides, endothelin and AVP affect differently on arterial and venous vascular beds as well as on portal pressure.  相似文献   

19.
To explain the high rate of blood flow in the corpus luteum, we hypothesize that luteal blood vessels offer minimal resistance to flow and are incapable of vasomotion. This hypothesis was tested in rabbits at mid-pseudopregnancy by measuring blood flow in the corpus luteum and ovarian stroma with tracer-labeled microspheres at three levels of arterial blood pressure, which was manipulated by constricting the aorta above the ovarian artery. In addition, the distribution of vascular smooth muscle in the ovary was evaluated with morphological and immunocytochemical techniques. Decreases in arterial pressure were paralleled by reductions in blood flow in the corpus luteum, whereas ovarian stromal blood flow was unchanged. Consistent with our hypothesis, there was no change in the low level of vascular resistance offered by blood vessels in the corpus luteum, supporting the view that they are maximally dilated and incapable of autoregulation. Morphologically, the vessels within the corpus luteum appeared as large sinusoidal capillaries without smooth muscle, providing an anatomical explanation for the lack of vasomotor control demonstrated physiologically. The absence of vascular smooth muscle was confirmed with immunocytochemistry using an antibody against the muscle-specific intermediate filament, desmin. The fluorescein-labeled antibody decorated arteries and arterioles within the ovarian stroma and near the capsule of the corpus luteum, but did not decorate vessels in the corpus luteum of pseudopregnancy, providing additional evidence that the vessels of the corpus luteum lack the smooth muscle investment necessary to change vascular caliber. From these findings, we have proposed a novel scheme to explain intraovarian blood flow regulation. Vascular resistance in the ovarian stroma, as in most tissues, is acutely regulated by dilation or constriction of intratissue arterioles. In contrast, vascular resistance within the corpus luteum is modeled as a relatively invariable parameter, fixed at a low level by the morphological characteristics of the luteal vasculature. Therefore, the corpus luteum operates on a linear (maximally "vasodilated") pressure-flow curve, does not actively regulate intratissue blood flow, and is subject to acute regulation of perfusion only through changes in extra-luteal vessels.  相似文献   

20.
In acute experiments on nembutal anesthetized dogs stimulation of anterior hypothalamus elicited changes in the hepatic artery blood flow, which followed those of arterial pressure; the vascular resistance remaining unchanged. The stimulation of medial and posterior hypothalamus led to decrease in flow and increase in the resistance of the hepatic artery. In most cases of hypothalamic stimulation the portal blood flow diminished, portal pressure and vascular resistance increased. The opposite reactions were observed during stimulation of sympathoinhibitory area, paraventricular and lateral hypothalamic nuclei. The conclusion is made that the hypothalamus participates in integrative and differential control of the hepatic circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号