首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal recognition particle (SRP) targeting pathway is required for the efficient insertion of many polytopic inner membrane proteins (IMPs) into the Escherichia coli inner membrane, but in the absence of SRP protein export proceeds normally. To define the properties of IMPs that impose SRP dependence, we analyzed the targeting requirements of bitopic IMPs that are structurally intermediate between exported proteins and polytopic IMPs. We found that disruption of the SRP pathway inhibited the insertion of only a subset of bitopic IMPs. Studies on a model bitopic AcrB-alkaline phosphatase fusion protein (AcrB 265-AP) showed that the SRP requirement for efficient insertion correlated with the presence of a large periplasmic domain (P1). As previously reported, perturbation of the SRP pathway also affected the insertion of a polytopic AcrB-AP fusion. Even exhaustive SRP depletion, however, failed to block the insertion of any AcrB derivative by more than 50%. Taken together, these data suggest that many proteins that are normally targeted by SRP can utilize alternative targeting pathways and that the structure of both hydrophilic and membrane-spanning domains determines the degree to which the biogenesis of a protein is SRP dependent.  相似文献   

2.
In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.  相似文献   

3.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

4.
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.  相似文献   

5.
Consistent with many other results indicating that SecA plays an essential role in the translocation of presecretory proteins across the Escherichia coli inner membrane, we previously found that a approximately 95% depletion of SecA completely blocks the export of periplasmic proteins in vivo. Surprisingly, we found that about 25% of the outer membrane protein (OMP) OmpA synthesized after SecA depletion was gradually translocated across the inner membrane. In this study we analyzed the export of several other OMPs after SecA depletion. We found that 25-50% of each OMP as well as an OmpA-alkaline phosphatase fusion protein was exported from SecA-deficient cells. This partial export was completely abolished by the SecA inhibitor sodium azide and therefore still required the participation of SecA. Examination of a variety of OmpA derivatives, however, ruled out the possibility that OMPs are selectively translocated in SecA-deficient cells because SecA binds to their N termini with unusually high affinity. Export after SecA depletion was observed in cells that lack SecB, the primary targeting factor for OMPs, but was abolished by partial inactivation of DnaK. Furthermore, OmpA could be isolated in a stable complex with DnaK. The data strongly suggest that OMPs require only a relatively low level of translocase activity to cross the inner membrane because they can be preserved in a prolonged export-competent state by DnaK.  相似文献   

6.
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.  相似文献   

7.
In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.  相似文献   

8.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

9.
Filamentous haemagglutinin (FHA) is the major adhesin of Bordetella pertussis, the whooping cough agent. FHA is synthesized as a 367-kDa precursor harbouring a remarkably long signal peptide with an N-terminal extension that is conserved among related virulence proteins. FHA is secreted via the two-partner secretion pathway that involves transport across the outer membrane by a cognate transporter protein. Here we have analyzed the mechanism by which FHA is targeted to, and translocated across, the inner membrane. Studies were performed both in vitro using Escherichia coli inside-out inner membrane vesicles and in vivo by pulse-chase labelling of Bordetella pertussis cells. The data collectively indicate that like classical periplasmic and outer membrane proteins, FHA requires SecA and SecB for its export through the SecYEG translocon in the inner membrane. Although short nascent chains of FHA were found to cross-link to signal recognition particle (SRP), we did not obtain indication for an SRP-dependent, co-translational membrane targeting provoked by the FHA signal sequence. Our results rule out that the extended signal peptide of FHA determines a specific mode of membrane targeting but rather suggest that it might influence the export rate at the inner membrane.  相似文献   

10.
The pseudopilin PulG is an essential component of the pullulanase-specific type II secretion system from Klebsiella oxytoca. PulG is the major subunit of a short, thin-filament pseudopilus, which presumably elongates and retracts in the periplasm, acting as a dynamic piston to promote pullulanase secretion. It has a signal sequence-like N-terminal segment that, according to studies with green and red fluorescent protein chimeras, anchors unassembled PulG in the inner membrane. We analyzed the early steps of PulG inner membrane targeting and insertion in Escherichia coli derivatives defective in different protein targeting and export factors. The beta-galactosidase activity in strains producing a PulG-LacZ hybrid protein increased substantially when the dsbA, dsbB, or all sec genes tested except secB were compromised by mutations. To facilitate analysis of native PulG membrane insertion, a leader peptidase cleavage site was engineered downstream from the N-terminal transmembrane segment (PrePulG*). Unprocessed PrePulG* was detected in strains carrying mutations in secA, secY, secE, and secD genes, including some novel alleles of secY and secD. Furthermore, depletion of the Ffh component of the signal recognition particle (SRP) completely abolished PrePulG* processing, without affecting the Sec-dependent export of periplasmic MalE and RbsB proteins. Thus, PulG is cotranslationally targeted to the inner membrane Sec translocase by SRP.  相似文献   

11.
Import of nuclear-encoded mitochondrial proteins requires the action of at least two different import machines, called translocons, in the mitochondrial inner membrane (IM). The TIM23 complex mediates the translocation of proteins into the mitochondria matrix, whereas the TIM22 complex is required for the insertion of polytopic proteins into the IM. While the two translocons are distinct and composed of separate subunits, the essential reactions in each complex are carried out by homologous proteins. In addition, the core components of both the TIM23 and TIM22 translocons have been shown to form aqueous pores in the mitochondrial IM. In this review, we summarize what is known about import of proteins across the mitochondrial IM.  相似文献   

12.
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4. 5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and DeltamicroH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.  相似文献   

13.
SecA protein, a principal component of the protein export machinery of Escherichia coli, is found both in the cytoplasm and inner membrane of cells. Previous in vitro and in vivo studies demonstrated that the interaction of SecA with the inner membrane requires the presence of physiological levels of anionic (acidic) phospholipids. In this report the degree of SecA insertion into model membranes and the conformational changes associated with this event have been examined. The extent of association of SecA with model membranes was determined by photolabeling with a hydrophobic reagent, and the depth of insertion of the protein into the phospholipid bilayer was determined by the amount of quenching of SecA fluorescence by both brominated and spin-labeled phospholipids. These methods demonstrated that SecA penetrates deep within the acyl chain region of the phospholipid bilayer. It was also found that SecA penetration into vesicles was associated with a major conformational change in the protein. This change can be induced by higher temperatures and involves a partial unfolding event as judged by differential scanning calorimetry, SecA fluorescence and increased sensitivity to proteolysis. These properties suggest the induction of a molten-globule-like conformation in a portion of the SecA polypeptide. This change was also induced at lower temperatures by the presence of membranes containing a physiological amount of the anionic phospholipid, phosphatidylglycerol. The partial unfolding and concomitant deep insertion of SecA into membranes may aid in the insertion of precursor proteins into the inner membrane and may influence possible interactions between SecA and the integral membrane export machinery components.  相似文献   

14.
The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.  相似文献   

15.
Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.  相似文献   

16.
The Escherichia coli signal recognition particle (SRP) is a ribonucleoprotein complex that targets nascent inner membrane proteins (IMPs) to transport sites in the inner membrane (IM). Since SRP depletion only partially inhibits IMP insertion under some growth conditions, however, it is not clear why the particle is absolutely essential for viability. Insights into this question emerged from experiments in which we analyzed the physiological consequences of reducing the intracellular concentration of SRP below the wild-type level. We found that even moderate SRP deficiencies that have little effect on cell growth led to the induction of a heat shock response. Genetic manipulations that suppress the heat shock response were lethal in SRP-deficient cells, indicating that the elevated synthesis of heat shock proteins plays an important role in maintaining cell viability. Although it is conceivable that the heat shock response serves to increase the capacity of cells to target IMPs via chaperone-based mechanisms, SRP-deficient cells did not show an increased dependence on either GroEL or DnaK. By contrast, the heat shock-regulated proteases Lon and ClpQ became essential for viability when SRP levels were reduced. These results suggest that the heat shock response protects SRP-deficient cells by increasing their capacity to degrade mislocalized IMPs. Consistent with this notion, a model IMP that was mislocalized in the cytoplasm as the result of SRP depletion appeared to be more stable in a Deltalon DeltaclpQ strain than in control cells. Taken together, the data provide direct evidence that SRP is essential in E. coli and possibly conserved throughout prokaryotic evolution as well partly because efficient IMP targeting prevents a toxic accumulation of aggregated proteins in the cytoplasm.  相似文献   

17.
The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42 degrees C as well as show reduced growth at the permissive temperature of 30 degrees C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42 degrees C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.  相似文献   

18.
In Escherichia coli, the insertion of most inner membrane proteins is mediated by the Sec translocase. Ribosome-bound nascent chains of Sec-dependent inner membrane proteins are targeted to the SecYEG complex via the signal recognition particle pathway. We now demonstrate that the signal recognition particle-dependent co-translational membrane targeting and membrane insertion of FtsQ can be reconstituted with proteoliposomes containing purified SecYEG. SecA and a transmembrane electrical potential are essential for the translocation of the large periplasmic domain of FtsQ, whereas co-reconstituted YidC has an inhibitory effect. These data demonstrate that membrane protein insertion can be reconstituted with a minimal set of purified Sec components.  相似文献   

19.
SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins in Escherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secB missense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.  相似文献   

20.
The polytopic inner membrane protein MalF is a constituent of the MalFGK(2) maltose transport complex in Escherichia coli. We have studied the biogenesis of MalF using a combination of in vivo and in vitro approaches. MalF is targeted via the SRP pathway to the Sec/YidC insertion site. Despite close proximity of nascent MalF to YidC during insertion, YidC is not required for the insertion of MalF into the membrane. However, YidC is required for the stability of MalF and the formation of the MalFGK(2) maltose transport complex. Our data indicate that YidC supports the folding of MalF into a stable conformation before it is incorporated into the maltose transport complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号