首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The gram-negative bacterium Caulobacter crescentus progresses through three distinct morphological transitions, including both motile and nonmotile cell types, during its cell cycle. Assessment of the extent of regulation of polypeptide synthesis during these transitions was carried out with two-dimensional gel electrophoresis of whole-cell extracts. Synchronous cells were pulse-labeled with 14C-amino acids for 10-min intervals throughout the entire 2-h cell cycle. The radioactively labeled polypeptides were analyzed by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms resulting from fluorography of the second dimension provided the detection of approximately 1,000 unique spots. The 600 predominant polypeptide spots, representing approximately 40% of the coding capacity of Caulobacter deoxyribonucleic acid, were analyzed for major changes in their synthetic rates. Quantitation by densitometric scanning of individual polypeptide spots represented on the sequential fluorograms demonstrated significant changes in the temporal synthesis of 6% of the polypeptides. Extracts from asynchronous cells were fractionated to obtain total-membrane and deoxyribonucleic acid-binding polypeptide fractions. Subsequent electrophoresis of these cellular fractions revealed approximately 100 membrane polypeptides and 25 deoxyribonucleic acid-binding polypeptides. Eight of the regulated polypeptides were identified as membrane or deoxyribonucleic acid-binding proteins. The regulated polypeptides can be grouped into three main categories based on their interval of synthesis. The three categories are in direct correlation with the three distinct cell cycle stages. This analysis has also revealed a unique transition period in the cell cycle in which a significant proportion of gene expression is regulated.  相似文献   

2.
Two dimensional polyacrylamide gel electrophoresis resolved protein from intact chloroplasts of wild type Euglena gracilis Klebs var. bacillaris Cori into 185 polypeptides of which 55 were localized on the whole cell polypeptide map. Of these chloroplast polypeptides, the relative amounts of 49 increased, the relative amounts of two decreased, and the relative amounts of four polypeptides were unaltered by exposure of dark grown resting cells to light for 72 hours. Proteins from intact purified mitochondria obtained from a bleached mutant (W10BSmL) lacking plastids were resolved into 193 polypeptides of which 44 were localized on the whole cell polypeptide map from wild type cells. Of these mitochondrial polypeptides, the relative amount of one increased, the relative amounts of 12 were unaltered, and the relative amounts of 31 decreased after exposure of the dark grown resting cells to light. Since it is known that the development of the chloroplast in Euglena occurs without a net increase in total cellular protein and without a change in the size of the cellular amino acid pools, the degradation of mitochondrial polypeptides represents a major source of amino acids for the synthesis of chloroplast polypeptides.  相似文献   

3.
The effect of salt stress on polypeptide and mRNA levels in roots of two barley (Hordeum vulgare L.) cultivars differing in salt tolerance (cv CM 72, tolerant; cv Prato, sensitive) was analyzed using two-dimensional polyacrylamide gel electrophoresis. Preliminary experiments indicated that germination of Prato was inhibited significantly in the presence of NaCl, but growth of the surviving Prato seedlings was not substantially different from that of CM 72. Fluorographs of two-dimensional gels containing in vivo labeled polypeptides or in vitro translation products were computer analyzed to identify and quantitate changes that resulted when plants were grown in the presence of 200 millimolar NaCl for 6 days. The patterns of in vivo labeled polypeptides and in vitro products of CM 72 and Prato were qualitatively the same. Salt caused quantitative changes in numerous polypeptides and translatable mRNAs, but, overall, the changes were relatively small. Salt did not induce the synthesis of unique polypeptides or translatable mRNAs and did not cause any to disappear. Because of the similarities of the two cultivars with respect to growth and polypeptide patterns and the slight changes in polypeptide and translation product levels caused by salt, specific polypeptides or translatable mRNAs that are related to salt tolerance in barley could not be identified.  相似文献   

4.
采用蓝绿温和胶电泳系统可以非常有效地分离叶绿体蛋白质复合物,包括PSⅠ, PSⅡ, ATP合酶,细胞色素b6f复合物,捕光色素复合物和1,5-二磷酸核酮糖羧化酶.还结合SDS-聚丙烯酰胺凝胶电泳将叶绿体多亚基复合物的50多种蛋白质分开,利用免疫印迹对蛋白质复合物进行了初步鉴定,同时还应用蓝色温和胶电泳分析基质、基粒类囊体复合物的组成.  相似文献   

5.
Proteins of chloroplast subfragments enriched in Photosystem I and Photosystem II electron flow activity have been analyzed by two-dimensional polyacrylamide gel electrophoresis. In the first dimension, polyacrylamide gel isoelectric focusing (pH 5–7) was used in the presence of Triton X-100, followed at right angle by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Characteristic fingerprints were obtained for the Photosystem I and II fractions and a correlation between the major proteins separated by isoelectric focusing and the major polypeptides separated by undimensional SDS electrophoresis was established. Two dominant spots of 68 000 and 60 000 daltons appeared in the two-dimensional patterns of Photosystem I fractions pI values about 5.6; two spots with molecular weights of 33 000 and 23 000 were characteristics for Photosystem II fractions pI values about 5.3 and 6.3). Photosystem I fractions were furthermore characteristics by a series of spots in the 44 000–33 000 range pI values from about 5.9 to 6.8). The two-dimensional system revealed that (a) several SDS-polypeptides have multiple forms differing in charge only, (b) some proteins separated by isoelectric focusing are resolved in the second dimensional into polypeptides of different size. The two-dimensional method combining Triton X-100 isoelectric focusing' and SDS electrophoresis provides a higher degree of resolution than either of the unidimensional methods thus allowing a detailed analysis of chloroplast membrane proteins.  相似文献   

6.
Mitochondrial translation products obtained from yeast cells labeledin vivo in the presence of cycloheximide were separated by dodecylsulfate polyacrylamide gel electrophoresis. The labeled band, with a molecular weight of 30,000 corresponding to cytochromeb, was excised and subsequently transferred to a second gel. After electrophoretic separation, two labeled polypeptides with apparent molecular weights of 67,000 and 27,000 became visible in addition to the cytochromeb band of 30,000 molecular weight. Heating of the cytochromeb band prior to transfer resulted in an increase in the amount of the labeled polypeptides migrating with a molecular weight of 67,000.Longer exposure during autoradiography of the gels of mitochondrial translation products resulted in the appearance of a double band with an apparent molecular weight of 67,000. Limited proteolysis of this 67,000 dalton protein withStaphylococcus aureus V8 protease revealed a peptide map similar to that obtained after proteolysis of cytochromeb. These results suggest that the polypeptide with an apparent molecular weight of 67,000 represents an aggregate of cytochromeb that is either present as such in the membrane or is formedin vitro during the experimental manipulations to prepare mitochondria for gel electrophoresis.Abbreviations used: SDS, sodium dodecylsulfate.This work is in partial fulfillment of the requirements for the degree of Doctor of Philosophy from the City University of New York.  相似文献   

7.
Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3–10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.  相似文献   

8.
A two-dimensional electrophoretic system has been developed for the separation of chloroplast thylakoid membrane proteins. This system incorporates nondenaturing polyacrylamide gel electrophoresis in the presence of the nonionic detergent dodecyl-beta-D-maltoside in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Thylakoid membranes isolated from Spinacia oleracea were solubilized in 1.0% dodecyl-beta-D-maltoside and separated in 4-7% linear acrylamide gradient tube gels which contained 0.05% dodecyl-beta-D-maltoside. After electrophoresis, the tube gels were equilibrated with a sodium dodecyl sulfate-containing equilibration buffer and applied to a 12.5-20% acrylamide linear gradient gel. The Lammelli buffer system was used in both dimensions. The two-dimensional gels were analyzed by staining sequentially with 3,3',5,5'-tetramethylbenzidine-H2O2, Coomassie blue, and silver staining. A number of protein components were identified on "Western blots" of these two-dimensional gels by immunological localization. Membrane protein complexes such as the light-harvesting chlorophyll a/b protein complex, photosystem I, photosystem II, the cytochrome b6/f complex and ribulose bisphosphate carboxylase appear to migrate as essentially intact complexes in the first dimension and appear as vertical series of resolved subunits in the second dimension. This technique complements isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis in providing additional information concerning the subunit composition of membrane protein complexes and may prove to be of general utility for studying the protein composition of other membrane systems.  相似文献   

9.
A pH 5.8 polyacrylamide gel electrophoresis buffer is described. Electrophoresis in this MES-citrate system at pH 5.8 separates E. coli transfer RNAs into 15 bands using 15% acrylamide gels. Polyacrylamide gel electrophoresis in a second dimension at pH 8.3 further resolves E. coli t-RNAs into 20 spots.  相似文献   

10.
The individual species of the core polypeptide family of 30-50 S hnRNP resolved on two-dimensional electrophoresis (nonequilibrium pH gradient gels combined with sodium dodecyl sulfate polyacrylamide gels) have been subjected to the enzymatic cleavage procedure of D.W. Cleveland, S.G. Fischer, M.W. Kirschner, and U.K. Laemmli (1977, J. Biol. Chem. 252, 1102-1106). This allowed direct and extensive structural analysis of almost every member of the core polypeptide family by comparison of their overall peptide maps. Thus, the over 20 protein species, resolved on two-dimensional gels, from the four major bands (A, B, C, and D) on one-dimensional sodium dodecyl sulfate-polyacrylamide gels, belong mainly to three distinct protein groups, and each species represents the product of extensive post-translational modification. Furthermore, their inability to bind the lectin concanavalin A makes it unlikely that the modifications of these proteins represent glycosylations. Therefore, the core polypeptides cannot be glycoproteins of the general class with affinity for concanavalin A.  相似文献   

11.
Three fractions (male germ unit [MGU]-rich, cytoplasmic-particulate and water-soluble proteins) were isolated from pollen of Plumbago zeylanica L. Proteins were extracted using a phenol procedure and polypeptide patterns were compared on one- and two-dimensional polyacrylamide gels. The MGU-rich fraction contains the sperm and vegetative nucleus of the pollen grain and yielded 427 spots >33 kilodaltons. The cyto-plasmic-particulate fraction contained 515 spots >33 kilodaltons. The third fraction consisted of water-soluble proteins and polypeptides from the pollen cytoplasm, in which 285 spots (>33 kilodaltons) were identified. Of 133 polypeptide spots suitable for comparison, 18 were unique to the MGU-rich fraction, 3 to the cytoplasmic-particulate fraction, 14 to the water-soluble fraction, 65 were common to two different fractions (and absent in one), and 33 were common to all three of the fractions examined.  相似文献   

12.
The sites of synthesis of the major thylakoid membrane polypeptides have been studied in the green alga Chlamydomonas reinhardtii by pulse labeling of cells with [14C]acetate in the presence of inhibitors specific for chloroplast and cytoplasmic protein synthesis. The labeled membrane polypeptides were separated by an improved method of sodium dodecyl sulfate (SDS) gradient gel electrophoresis, and autoradiographs were made of the dried gels. The results demonstrate that of the 33 polypeptides resolved in the gels, at least nine are made on chloroplast ribosomes. Two of these (polypeptides 2 and 6) are associated with the reaction centers of photosystems I and II. Another polypeptide (polypeptide 5) appears from genetic data to be coded by chloroplast DNA. Experiments with a mutant whose chloroplast ribosomes are resistant to spectinomycyn (spr-u-1-6-2) show that polypeptides whose synthesis takes place on chloroplast ribosomes are made in the presence of spectinomycin in the mutant although their synthesis is blocked by this antibiotic in wild type cells.  相似文献   

13.
Analysis of in vivo phosphorylation of mouse liver ribosomal proteins was performed by two-dimensional polyacrylamide gel electrophoresis following 32P-injection. Our method is special and differs from other eukaryotic systems reported in that all proteins separated on the first dimension gel are completely solubilized, moving quantitatively to the second dimension gel. Only ribosomes from polysomes were used, ensuring analysis of ribosomes actively engaged in protein synthesis. We resolved sixty-five distinct proteins from ribosomes from membrane bound or free polysomes. In both cases radioautography revealed similar labeled patterns with one highly phosphorylated ribosomal protein and five marginally labeled spots.  相似文献   

14.
Histones from 19-day-old chick embryo lens epithelium, lens fibers, liver, brain, and erythrocytes were electrophoresed in polyacrylamide gels using buffers containing sodium dodecylsulfate, acetic acid urea, or mixtures of Triton X-100 acetic acid urea. In the last two buffer systems, histone bands were characterized by their apparent molecular weights determined by electrophoresis in the second dimension in sodium dodecylsulfate containing polyacrylamide gels. From the densitograms of the stained gels, the relative proportion of protein in different histone bands was estimated. With the exception of the erythrocyte-specific histone H5, all histones from different tissues examined in any of the gel systems migrated with the same mobilities. In lens epithelium and lens fibers, all histones were present in identical proportions. As compared to liver and brain, the total amount of histone H1 was significantly lower in lens cells and erythrocytes, possibly reflecting differences between the differentiated states. However, no tissue-specific differences were found in the relative distribution of histone H1 I and H1 II among lens epithelium, lens fiber, liver and, brain, but a threefold higher H1 I: H1 II ratio (0.5–0.7) was found in erythrocytes.  相似文献   

15.
Polyacrylamide gel electrophoresis coupled with fluorography is a sensitive method for visualizing individual gene products synthesized in vitro by Schistosoma mansoni (K. Atkinson and B. G. Atkinson 1980, Nature (London)283, 478–479). In vitro labelling with radioactive amino acids ensures that the proteins are of parasite origin and fluorography permits detection of minute amounts of newly synthesized, electrophoretically separated gene products. One-dimensional electrophoretic separation in polyacrylamide gels with sodium dodecyl sulphate and fluorography of juvenile and adult proteins reveal that juveniles produce most adult proteins. Although similar studies with proteins from sexed adults imply that analogous gene products are elaborated by both sexes, a number of sex-specific gene products are resolvable by more rigorous two-dimensional electrophoretic separations. The homogametic male produces 5 polypeptides not produced by the heterogametic female. Three outstanding male-specific gene products include a polypeptide with a molecular weight (MW) of 88 kilodaltons (kd) and an isoelectric point (pI) of 5.65, one with an MW of 66 kd and a pI of 5.25, and one with an MW of 58 kd and a pI of 5.25. Other, readily detectable male-specific polypeptides include one which coelectrophoreses with β-actin and one which coelectrophoreses with β-tropomyosin. The female synthesizes 4 specific polypeptides which have isoelectric points between 4.3 and 4.7, are of low molecular weight, and are resolvable only with 12% acrylamide gels. Two-dimensional electrophoresis resolves 74 major polypeptides synthesized by adult worms, and a code is presented which identifies each polypeptide by sex specificity, isoelectric point, and molecular weight.  相似文献   

16.
The polypeptide composition of Chlamydia was examined by acrylamide gel electrophoresis. When the polypeptide patterns of purified infectious elementary bodies (EB) of C. psittaci meningopneumonitis strain, 6BC strain, and C. trachomatis T'ang strain were compared, no significant differences were observed. The polypeptide patterns of whole EB and reticulate bodies (RB) appeared to overlap, but differences were found. In EB cell walls, nine main and several minor bands of polypeptides were observed in gels containing sodium lauryl sulfate, and the eighth main band from the top of the gel stained positive with periodic acid-Schiff reagent. On the other hand, the polypeptides in bands 3, 6, and 8 in EB cell walls were missing or minor in RB cell walls, and the ninth band was clearly stained by PAS. Band 8 was also stained slightly. Purified subunits, which occur as a lattice structure on the inside layer of EB cell walls but are largely missing in RB cell walls, contained bands 4, 6, and 8, and band 8 was PAS positive. These results indicate that significant polypeptide synthesis or reorganization in the cell walls occurs during the growth cycle.  相似文献   

17.
S Kabir 《Microbios》1977,20(79):47-62
The number, nature and organization of the outer membrane proteins of Salmonella typhimurium have not yet been resolved. Therefore these proteins were isolated using a concentrated solution of guanidine hydrochloride and studied using different analytical techniques. Upon chromatography on Sephadex G-200 four fractions were obtained. Only the fraction containing a protein of molecular weight 13,000 produced immunoprecipitation reactions with the antisera raised against the whole bacteria. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, 7 major proteins were found, with molecular weights between 13,000 and 43,000. Isoelectric focusing on 4.6% polyacrylamide gels resolved the outer membrane proteins into 10 bands with apparent isoelectric points between 5.0 and 8.4. Finally these proteins could be further resolved into as many as 50 spots where a two-dimensional electrophoresis was carried out with isoelectric focusing in the first dimension, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate in the second dimension. These results demonstrated that the outer membrane proteins of S. typhimurium are extremely heterogeneous. To investigate the mode of organization of lipopolysaccharides in the outer membrane, the membrane proteins were separated by the liquid isoelectric focusing technique. Lipopolysaccharides were primarily found to be associated with a protein of isoelectric point 7.8.  相似文献   

18.
Histones from 19-day-old chick embryo lens epithelium, lens fibers, liver, brain, and erythrocytes were electrophoresed in polyacrylamide gels using buffers containing sodium dodecylsulfate, acetic acid urea, or mixtures of Triton X-100 acetic acid urea. In the last two buffer systems, histone bands were characterized by their apparent molecular weights determined by electrophoresis in the second dimension in sodium dodecylsulfate containing polyacrylamide gels. From the densitograms of the stained gels, the relative proportion of protein in different histone bands was estimated. With the exception of the erythrocyte-specific histone H5, all histones from different tissues examined at any of the gel systems migrated with the same mobilities. In lens epithelium and lens fibers, all histones were present in identical proportions. As compared to liver and brain, the total amount of histone Hl was significantly lower in lens cells and erythrocytes, possibly reflecting differences between the differentiated states. However, no tissue-specific differences were found in the relative distribution of histone Hl I and Hl II among lens epithelium, lens fiber, liver and, brain, but a threefold higher Hl I : Hl II ratio (0.5--0.7) was found in erythrocytes.  相似文献   

19.
Cytochrome oxidase was purified from Neurospora crassa by ammonium sulfate fractionation in the presence of bile salts. The enzyme preparations contained 10-13 nmol of heme a per mg of protein; no other hemoproteins could be detected. Dodecylsulfate gel electrophoresis resolved the enzyme complex into seven major bands, representing seven polypeptide subunits. A procedure is described that allows the isolation of these enzyme subunits on a large scale starting from a single batch of oxidase preparation. It involves dissociation of the enzyme complex by dodecylsulfate and subsequent separation of the obtained polypeptides by chromatography in the presence of various dodecylsulfate concentrations. Purification of subunits 3, 4, 5, 6 and 7 was achieved by column chromatography using molecular sieves (Sephadex G-100, Bio Gel P-60) and hydroxylapatite. For the purification of subunits 1 and 2 an electrophoretic separation on a preparative polyacrylamide gel was required. The advantages and disadvantages of the separation procedure of the enzyme polypeptides are discussed. As a special point of interest, the conservation of antigenic determinants of the polypeptide chains during the dodecylsulfate treatment is considered.  相似文献   

20.
Polypeptides of spinach chloroplast envelopes were separated by electrophoresis in an SDS-polyacrylamide gradient gel. At least 37 polypeptides were resolved; nine were prominent. Two (Mr 54 000 and 16 000) were also found in the stroma fraction and identified by peptide mapping and isoelectric focusing in the second dimension as the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Proteins of the chloroplast envelope were also separated by isoelectric focusing. An adaptation of a previous method (Ames, G.F.L. and Nikaido, K. (1976) Biochemistry 15, 616ndash;623), using solubilization in SDS and isoelectric focusing in the presence of a high concentration of Nonidet P-40, gave the best separation and resolved the envelope membranes into at least 21 proteins. The major band (pI 6.85) contained both subunits of the carboxylase and at least two additional polypeptides which corresponded to the prominent bands found in SDS gel electrophoresis of chloroplast envelopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号