首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro propagation methods using seeds and nodal segments of a 21-year old Couroupita guianensis - a medicinally important but threatened tree have been developed. Hundred percent of the seeds germinated on half strength Murashige and Skoog (MS) medium with 2.0 mg l?1 indole-3 butyric acid (IBA). Nodal segments were found most suitable for the establishment of cultures. About 90 % explants responded and 4.1 ± 0.23 shoots per node were induced after five weeks of inoculation on MS medium +4.0 mg l?1 6-benzylaminopurine (BAP). Further shoot multiplication was achieved by repeated transfer of mother explants and subculturing of in vitro produced shoots on fresh medium. Maximum number (8.2 ± 0.17) of shoots were regenerated on MS medium with 1.0 mg l?1 each of BAP and Kinetin (Kin) + 0.5 mg l?1 α-naphthalene acetic acid (NAA) with additives (50 mg l?1 of ascorbic acid and 25 mg l?1 each of adenine sulphate, L-arginine and citric acid). The multiplied shoots rooted (4.3 ± 0.26 roots/shoot) on half strength MS medium with 2.5 mg l?1 IBA. All the shoots were rooted ex vitro when pulse treated with 400 mg l?1 of IBA for five min with an average of 7.3 ± 0.23 roots per shoot. Nearly 86 % of these plantlets were acclimatized within 7–8 weeks and successfully transferred in the field. Biologically significant developmental changes were observed during acclimation particularly in leaf micromorphology in terms of changes in stomata, veins and vein-islets, and trichomes. This study helps in understanding the response by the plants towards outer environmental conditions during acclimatization. This is the first report on micropropagation of C. guianensis, which could be used for the large-scale multiplication, restoration and conservation of germplasm of this threatened and medicinally important tree.  相似文献   

2.
Leaf explants of the second or third node were collected from field-grown elite Jatropha curcas trees and incubated in Murashige and Skoog’s (Physiol Plant 15:473–497, 1962) medium supplemented with growth regulators. Direct shoot organogenesis was induced when explants were incubated in a medium containing 0.5 mg l?1 benzyladenine (BA) and 0.1 mg l?1 indolebutyric acid (IBA). A maximum of seven shoot buds differentiated within 6 weeks of culture incubation. Indirect shoot organogenesis was obtained when explants were incubated in the medium supplemented with 0.5 mg l?1 BA along with 1.0 mg l?1 each of 2,4-dichlorophenoxyacetic acid (2,4-D) and indoleacetic acid (IAA). A pulse treatment of 0.5 mg l?1 thidiazurone (TDZ) and 0.1 mg l?1 IBA for 5 days was necessary for shoot organogenesis in green compact callus before subculture into 0.5 mg l?1 BA and 0.1 mg l?1 IBA containing medium. Leaf explants of J. curcas, collected from the field, contained endophytic bacterial contamination, which expressed itself after 2–3 subcultures. These bacteria were cultured and identified as Enterobacter ludwigii. After staining, these were found as gram-negative bacteria. Their sensitivity against different antibiotics has been tested by culturing them with different antibiotic stabs for 72 h. Finally, Augmentin® was found as the most effective and suitable antibiotic which not only controlled the bacteria within 2–3 subcultures but also supported the regeneration system and growth of the regenerated shoots and such cultures have been grown for a long-term of over 2 years without any contamination.  相似文献   

3.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   

4.
Brachystelma glabrum Hook.f. is an endemic plant species of Eastern Ghats, India. In this study, efficient protocols for in vitro micropropagation, flowering, and tuberization of this plant were developed. Sterilized shoot tip and nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators (PGRs) and additives for shoot induction and multiplication. Both shoot tip and nodal explants showed the best response (90 and 100%, respectively) on MS medium supplemented with thidiazuron (TDZ) at 1.0 mg L?1. The microshoots multiplied best on MS + TDZ (1.0 mg L?1) in combination with α-naphthaleneacetic acid (NAA) at 0.5 mg L?1 and coconut water (CW) at 25%. The highest number of in vitro flowers (4.0 flowers per microshoot) was observed on MS medium supplemented with a combination of N6-benzyladenine (BA) and indole-3-butyric acid (IBA), each at 1.5 mg L?1. In vitro-derived shoots produced aerial tubers on MS + TDZ (2.0 mg L?1) + IBA (0.5 mg L?1) and basal tubers on MS + TDZ at 2.0 mg L?1. In vitro shoots were best rooted on half-strength (½) MS + NAA at 0.5 mg L?1. The rooted plantlets were successfully acclimatized in pots with 70% survival after a hardening period of 1 mo. This protocol provides an effective method for the conservation of this endemic plant species.  相似文献   

5.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

6.
A micropropagation system for Bauhinia racemosa Lam. was developed involving axillary shoot proliferation and ex vitro rooting using nodal explants obtained from mature tree. MS medium with 3.0 mg l?1 BA (6-benzyladenine) was optimum for shoot bud induction. For shoot multiplication, mother explants were transferred repeatedly on medium containing low concentration of BA (0.75 mg l?1). Number of shoots was increased up to two passages and decreased thereafter. Shoot multiplication was further enhanced on MS medium containing 0.25 mg l?1 each of BA and Kin (Kinetin) with 0.1 mg l?1 of NAA (α-naphthalene acetic acid). Addition of 0.004 mg l?1 TDZ (thidiazuron) increased the rate of shoot multiplication and 21.81 ± 1.26 shoots per culture vessel were obtained. In vitro regenerated shoots were rooted under ex vitro conditions treated with 400 mg l?1 IBA (indole-3-butyric acid) for 7 min on sterile soilrite. After successful hardening in greenhouse, ex vitro rooted plants were transferred to the field conditions with ≈85% of survival rate. Micromorphological changes were observed on leaf surface i.e. development of vein density and trichomes and stomatal appearance, when plants were subjected to environmental conditions. This is the first report on in vitro regeneration of B. racemosa from mature tree.  相似文献   

7.
An efficient method of Coelogyne cristata mass propagation was developed using segment of protocorm-like bodies (PLBs) (3 mm2 in size). It was observed that ½ MS medium showed to be more effective to induce shoots through PLBs segment. The explants when cultured on ½ MS media containing TDZ and CP showed relatively superior effect on shoot regeneration as compared to the media containing TDZ alone or in combination with BP. Addition of BP and CP to the medium containing NAA and BA combinations proved distinctly better for shoot multiplication than that of the medium with NAA and BA combinations alone. The highest percentage of explants producing shoots, with a maximum average of 8.1 per explant, was induced on the medium supplemented with 1.0 mg l?1 NAA and 0.5 mg l?1 BA with CP. Shoots produced an average of 15 roots per explant on ½ MS medium supplemented with 2.0 mg l?1 IBA and BP. The 4 cm height plantlets with well-developed roots were successfully acclimatized. The results suggest that CP and BP can be used effectively to initiate shooting and rooting of Coelogyne cristata. Ploidy analysis of regenerated plants using flow cytometry revealed the same ploidy level (diploid). This efficient and reliable protocol could be useful for mass multiplication and germplasm conservation of the wild medicinal orchid.  相似文献   

8.
A simple and efficient regeneration protocol was developed for watermelon from cotyledonary node explants excised from 7-day-old in vitro grown seedlings. This study describes the effect of amino acids and polyamines (PAs) along with plant growth regulators (PGRs) on multiple shoot induction and rooting. The highest number of multiple shoots (46.43 shoots/explant) was obtained from cotyledonary node and they were also elongated (6.3 cm/shoot) on MS medium supplemented with 1 mg l??1 N 6 –Benzyladenine (BA), 5 mg l??1 leucine, and 10 mg l??1 spermidine. The elongated shoots developed profuse roots (23.03 roots/shoot) in MS medium containing 1 mg l??1 indole-3-butyric acid (IBA), 5 mg l??1 isoleucine, and 10 mg l??1 putrescine. All the rooted plantlets were successfully hardened and acclimatized in the greenhouse with a survival rate of 98%. The present study described an efficient method to obtain a 1.5-fold increase in the number of shoots, compared with the available regeneration protocols for watermelon. The plants developed in this study showed fivefold higher photosynthetic pigments compared to the control plants. The genetic fidelity of the regenerated plants was evaluated by SCoT and RAPD marker analyses, and banding patterns confirmed the true-to-type nature of in vitro regenerated plants.  相似文献   

9.
The axillary bud-break and multiple bud induction were obtained from the nodal explants of field-grown culms of Bambusa tulda in liquid Murashige and Skoog’s (MS) basal medium supplemented with 2.0 mg l?1 6-benzylaminopurine (BAP), 1.0 mg l?1 kinetin (Kn) and 8% coconut water. Multiple shoots regenerated and proliferated in the liquid MS medium fortified with 3.0 mg l?1 indolebutyric acid (IBA). While, in B. balcooa, MS medium supplemented with 2.5 mg l?1 BAP and 1.0 mg l?1 Kn induced axillary bud-break, bud multiplication and subsequently shoot elongation was obtained after three passages in the same medium. A clump with at least three shoots of both these bamboo species was used as propagule for successful root induction in half-strength MS liquid basal medium supplemented with 0.2 mg l?1 IBA. Sympodial type of microrhizomes developed in B. tulda and the regenerants acclimatized in the soil easily. Explants collected in the month of October produced best in vitro regeneration response in these two bamboo species. Endogenous phenol content proved detrimental for efficient shoot regeneration. The clonal fidelity of the regenerants was established by RAPD analysis advocating clonal propagation through axillary meristem culture of B. balcooa and B. tulda is reliable for commercial exploitation.  相似文献   

10.
An in vitro organogenesis protocol for Carissa carandas L. was developed using an auxin transport inhibitor (quercetin) and silver nitrate (AgNO3), an inhibitor of ethylene action, in association with cytokinins in the culture medium. This protocol produced the maximum number of shoots from aseptic seedling-derived shoot apex explants of C. carandas. The highest rate of shoot multiplication was recorded on MS medium containing 2.0 mg L?1 6-benzylaminopurine; 0.5 mg L?1 kinetin, and 0.75 mg L?1 quercetin at after 4 wk of culture. Similar results were obtained when MS medium fortified with 2.0 mg L?1 BAP, 0.5 mg L?1 kinetin, and 1.5 mg L?1 AgNO3 was used. However, successful rooting was achieved on quarter strength MS medium with 0.5 mg L?1 indole-3-acetic acid. In this study, an inhibitor of auxin transport and ethylene action maximized shoot multiplication in medium fortified with cytokinins. The established rapid micropropagation method could be used to conserve elite genotypes of C. carandas.  相似文献   

11.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

12.
An efficient protocol for direct and indirect shoot regeneration and proliferation from bulb scales of Shirui lily (Lilium mackliniae Sealy), an endangered Asiatic lily species endemic to the Shirui hill peak, Manipur, India, has been developed. Bulb scales were isolated from mature bulbs and cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of 6-benzylaminopurine (BAP), kinetin (KIN), or thidiazuron (TDZ). For direct shoot regeneration from bulb scale explants, 0.5 mg L?1 BAP yielded the highest shoot induction (3.5 shoots per scale; a 96.7% response). For indirect de novo organogenesis, optimum callus induction was achieved with 2.0 mg L?1 2,4-dichlorophenoxyacetic acid (2,4-D), and shoot organogenesis was higher (16.2) when subcultured onto 0.5 mg L?1 BAP medium. Multiple shoot regeneration and pseudo-bulb formation protocols were assessed; the highest shoot proliferation (10.1) occurred with 0.5 mg L?1 BAP and 1.0 mg L?1 gibberellic acid (GA3). Rooting response was 96% with 0.5 mg L?1 1-naphthalene acetic acid (NAA), with multiple roots per shootlet. Plantlet survival was increased to 92.5% during the hardening-off process by using hydroponics with Hoagland’s solution in a mist chamber. Clonal fidelity was assessed through random amplified polymorphic DNA (RAPD) analysis comparing the mother plant and regenerated plantlets. After confirming genetic uniformity, the pseudo-bulblets with four to six leaves and three to four roots were successfully established at the Shirui hills peak. This in vitro regeneration and ex vitro conservation approach could be helpful to save this rare endangered species in a sustainable way.  相似文献   

13.
Simarouba glauca DC. is a multipurpose tree species known for oil, timber, and medicinal properties. The application of biotechnological methods for genetic improvement of this species depends on the availability of an efficient plant regeneration system. In this study, the shoot regeneration potential of various seedling-derived explants was assessed after culturing on Murashige and Skoog (MS) and woody plant (WP) medium containing different growth regulators. The explants differed in their capacity for shoot bud formation and subsequent shoot elongation on the media tested. Shoot bud induction was achieved at a high frequency (44.8–76.2%) from different explants on MS medium with 2 mg L?1 6-benzylaminopurine (BAP) as compared to other media tested. Cotyledons exhibited the highest capacity for shoot bud induction (76.2%) and shoot elongation (9.1 elongated shoots per explant). The in vitro-regenerated shoots rooted at a frequency of 66.7% after pulse treatment in 10 mg mL?1 indole-3-butyric acid (IBA) solution for 5 min followed by culture on half-strength WP medium with 0.2 mg L?1 IBA. The regenerated plants were acclimatized and established in the glasshouse with a survival rate of 80%. Molecular characterization of regenerated plants using 14 random amplified polymorphic DNA (RAPD) and 15 intersimple sequence repeat (ISSR) primers revealed a high number of monomorphic bands, with only 1.6–2.6% of the bands being polymorphic. The regeneration system established in the study has the potential to be used for rapid multiplication, conservation, and genetic transformation of this species.  相似文献   

14.
Asparagus macrorrhizus: is a new species, which has been recently described. It is limited to the area surrounding the “Mar Menor” lagoon, in Murcia (Spain), and is the only “Critically Endangered” species of the genus Asparagus. Despite being protected, the number of plants has decreased in the last years due to the urbanization of its natural habitat. This species is a valuable genetic resource for asparagus breeding because of its special characteristics. So, the development of a micropropagation protocol is crucial to its conservation and use in breeding programs. The micropropagation protocol from asparagus rhizome buds previously developed by our research group has been adapted for A. macrorrhizus. Rhizome buds of A. macrorrhizus were extracted, disinfected, and then cultured on Asparagus Rhizome Bud Medium (ARBM) consisting of MS medium supplemented with 0.3 mg l??1 NAA, 0.1 mg l??1 KIN, 2 mg l??1 ancymidol and 6% sucrose. A percentage of 69.7?±?8.0% of the rhizome buds developed shoots, but only 17.4?±?7.9% of them rooted. To increase this low rooting rate, the shoots were cultured on Macrorrhizus Rooting Media (MRM) supplemented with three different concentrations of IBA. The highest rooting rate (55.0?±?7.9%) was reached when shoots were incubated in MRM-2 consisting of MS medium supplemented with 2 mg l??1 IBA and 4% sucrose. The acclimatization rate of the micropropagated plantlets was 90%. The method developed in this study allows the micropropagation of A. macrorrhizus, offering a new option to preserve this almost extinct species.  相似文献   

15.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   

16.
An efficient transformation system for high-throughput functional genomic studies of kiwifruit has been developed to overcome the problem of necrosis in Actinidia arguta explants. The system uses Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pART27-10 to inoculate leaf strips. The vector contains neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) (uidA) genes. A range of light intensities and different strengths of Murashige and Skoog (MS) basal salt media was used to overcome the problem of browning and/or necrosis of explants and calli. Callus browning was significantly reduced, resulting in regenerated adventitious shoots when the MS basal salt concentration in the culture medium was reduced to half-strength at low light intensity (3.4 μmol m?2 s?1) conditions. Inoculated leaf strips produced putative transformed shoots of Actinidia arguta on half-MS basal salt medium supplemented with 3.0 mg l?1 zeatin, 0.5 mg l?1 6-benzyladenine, 0.05 mg l?1 naphthalene acetic acid, 150 mg l?1 kanamycin and 300 mg l?1 Timentin®. All regenerated plantlets were deemed putative transgenic by histochemical GUS assay and polymerase chain-reaction analysis.  相似文献   

17.
Efficient shoot regeneration and Agrobacterium-mediated genetic transformation systems were developed for Petunia hybrida cv. Mitchell. Leaf explants of petunia were cultured on Murashige and Skoog (MS) medium with different concentrations of thidiazuron (TDZ) without auxin. The highest frequency of shoot regeneration (52.1%) and mean number of shoots per explant (4.1) were obtained on medium containing 2 mg l?1 TDZ. Leaf explants inoculated with Agrobacterium tumefaciens strain EHA101/pIG121Hm harboring ß-glucuronidase (uidA) and hygromycin resistance genes developed putative transformant shoots. The highest frequency of shoot regeneration (22.5%) and mean number of transformant shoots per explant (2.4) were obtained on a selection medium consisting of the above described regeneration medium and containing 25 mg l?1 hygromycin as the selection agent. Approximately 95% of putative transformant shoots expressed the uidA gene following histochemical ß-glucuronidase (GUS) assay. These were confirmed to be transgenic by PCR analysis and Southern blot hybridization.  相似文献   

18.
Moringa oleifera is a highly valued medicinal plant. The present research reports callus cultures of M. oleifera Lam., established from seeds and nodal segments on Murashige and Skoog’s (MS) medium using different concentrations and combinations of auxins and cytokinins. Best induction of callus was observed at BAP:IBA (3 mg l?1 each). Shooting and rooting from callus in terms of morphogenesis were observed in MS media supplemented with BAP:KN (2:0.2 mg l?1) and IBA:NAA (3:0.5 mg l?1), respectively. Multiple shooting was observed at treatment dose of BAP:NAA:IAA (1:1:0.2 mg l?1). Regenerated shoots were rooted and mature plants were established, acclimatized, and thrived in greenhouse conditions. Over 95 % of plantlets survived after transplanting plantlets into trays with a mixture of sand and perlite (2:1) for 20 days. The regeneration protocol developed in this study provides a basis for germplasm conservation and for further investigation of bioactive constituents of this medicinal plant. Further qualitative and quantitative production of steroidal sapogenins (diosgenin and tigogenin) from various morphogenetic stages was studied using TLC, PTLC, IR spectra, HPLC and GC–MS analysis. Steroidal sapogenins were maximum in the callus associated with rooting. Various stages were further analyzed for their antioxidant potential.  相似文献   

19.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

20.
Gentiana dinarica Beck, native to the Balkan Dinaric Mountains, was established in vitro from axillary shoot buds. It was maintained in the form of shoot cultures on MS medium supplemented with 1.0 mg l?1 6-benzyladenine (BA) and 0.1 mg l?1 α-naphthaleneacetic acid and excised root cultures were maintained on ½ MS medium with 0.5 mg l?1 indole-3-butyric acid (IBA). Shoot cultures, adventitious roots and excised root cultures were analysed by HPLC techniques for the presence of secoiridoids and xanthones. Gentiopicrin and swertiamarin, the dominant components of shoot cultures, could not be detected in root cultures. Xanthones were present in both shoot and root cultures with norswertianin-1-O-primeveroside as the dominant metabolite. The secoiridoid and xanthone content, although characteristic for certain plant organs, was dependent on the concentration of plant growth regulators (BA and IBA) added to the medium. BA in the shoot multiplication stage strongly increased the secondary metabolite (SEM) content of shoot cultures. IBA had little effect on SEM accumulation in shoots during rooting, while it moderately stimulated SEM accumulation in excised root cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号