首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glasshouse experiments were conducted to elicit biochemical substantiation for the observed difference in resistance to nematode infection in roots colonized by mycorrhiza, and susceptibility of the fresh flush of roots of the same plant that escaped mycorrhizal colonization. Tomato roots were assayed for their biochemical profiles with respect to total proteins, total phenols, indole acetic acid, activities of polyphenol oxidase, phenylalanine ammonia lyase and indole acetic acid oxidase. The roots of the same plant (one set) received Glomus fasciculatum and G. fasciculatum plus juveniles of Meloidogyne incognita separately; and half the roots of second set of plants received G. fasciculatum while the other half of roots did not receive any treatment. Roots colonized by G. fasciculatum recorded maximum contents of proteins and phenols followed by that of the roots that received G. fasciculatum plus M. incognita. However, IAA content was lowest in the roots that received mycorrhiza or mycorrhiza plus juveniles of root-knot nematode and correspondingly. Roots that received juveniles of root-knot nematode recorded maximum IAA content and per cent increase over healthy check and mycorrhiza-inoculated roots. The comparative assay on the activities of PPO, PAL and IAA oxidase enzymes in treated and healthy roots of tomato, indicated that PAL and IAA oxidase activities were maximum in G. fasciculatum colonized roots followed by the roots that received mycorrhiza plus juveniles of root-knot nematode, while the activity of PPO was minimum in these roots. The roots that received juveniles of root-knot nematode recorded minimum PAL and IAA oxidase activities and maximum PPO activity. Since the roots of same plant that received mycorrhiza and that did not receive mycorrhiza; and the plant that received nematode alone and mycorrhiza plus nematode recorded differential biochemical contents of proteins, total phenols and IAA, and differential activities of enzymes under study, it was evident that the biochemical defense response to mycorrhizal colonization against root-knot nematodes was localized and not systemic. This explained for the response of plant that differed in root galling due to nematode infection in presence of mycorrhizal colonization. The new or fresh roots which missed mycorrhizal colonization, got infected by nematodes and developed root galls.  相似文献   

2.
14-3-3 proteins function as major regulators of primary metabolism and cellular signal transduction in plants. However, their involvement in plant defense and stress responses is largely unknown. In order to better address functions of the rice 14-3-3/GF14 proteins in defense and abiotic stress responses, we examined the rice GF14 family that comprises eight numbers. The phylogenetic comparison with the Arabidopsis 14-3-3 family revealed that the majority of rice GF14s might have evolved as an independent branch. At least four rice GF14 genes, GF14b, GF14c, GF14e and Gf14f were differentially regulated in the interactions of rice-Magnaporthe grisea and rice-Xanthomonas oryzae pv. oryzae, and the incompatible interactions stronger induced the genes than the compatible interactions. These GF14 genes were also induced by the defense compounds, benzothiadiazole, methyl jasmonate, ethephon and hydrogen peroxide. Similarly, they were differentially regulated by salinity, drought, wounding and abscisic acid. Tissue-specific analysis and expression of GF14-YFP fusions revealed that the four GF14 isoforms were expressed with tissue specificity and accumulated differentially in the cytoplasm and nucleus. Our current study provides fundamental information for the further investigation of the rice GF14 proteins.  相似文献   

3.
The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH?7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.  相似文献   

4.
A pot experiment was conducted to investigate the uptake of Zn from experimentally contaminated calcareous soil of low nutrient status by maize inoculated with the arbuscular mycorrhizal (AM) fungus Glomus caledonium. EDTA was applied to the soil to mobilize Zn and thus maximize plant Zn uptake. The highest plant dry matter (DM) yields were obtained with a moderate Zn addition level of 300 mg kg?1. Plant growth was enhanced by mycorrhizal colonization when no Zn was added and under the highest Zn addition level of 600 mg kg?1, while application of EDTA to the soil generally inhibited plant growth. EDTA application also increased plant Zn concentration, and Zn accumulation in the roots increased with increasing EDTA addition level. The effects of inoculation with Gcaledonium on plant Zn uptake varied with Zn addition level. When no Zn was added, Zn translocation from roots to shoots was enhanced by mycorrhizal colonization. In contrast, when Zn was added to the soil, mycorrhizal colonization resulted in lower shoot Zn concentrations in mycorrhizal plants. The P nutrition of the maize was greatly affected by AM inoculation, with mycorrhizal plants showing higher P concentrations and P uptake. The results indicate that application of EDTA mobilized soil Zn, leading to increased Zn accumulation by the roots and subsequent plant toxicity and growth inhibition. Mycorrhizal colonization alleviated both Zn deficiency and Zn contamination, and also increased host plant growth by influencing mineral nutrition. However, neither EDTA application nor arbuscular mycorrhiza stimulated Zn translocation from roots to shoots or metal phytoextraction under the experimental conditions. The results are discussed in relation to the environmental risk associated with chelate-enhanced phytoextraction and the potential role of arbuscular mycorrhiza in soil remediation.  相似文献   

5.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

6.
7.
8.
9.
Translocation of 14C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. × Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.  相似文献   

10.
Although a number of factors have predictable effects on mycorrhizal colonization, determining generalized patterns for some variables have remained elusive. In particular, fire has been identified as a major event that may influence plant–mycorrhiza interactions, yet efforts to date have yielded contradictory results. Here, we assess the impact of fire on mycorrhizal colonization in Palafoxia feayi, a plant commonly found in the fireswept, nutrient-poor scrub community of central Florida. We determined soil nutrient conditions and percent colonization patterns for plants growing in replicate plots that were burned 1 to 15 years previously. The results showed a negative relationship between mycorrhizal colonization and time since fire, but there was no effect of fire return interval (lapsed time between successive fires). Soil nutrient analyses corroborated previous studies and showed no change in soil nutrients following fire. In contrast to previous studies of mycorrhizal colonization in Florida scrub, we conclude that fire can affect arbuscular mycorrhizal fungi colonization and we speculate that this is mediated by light availability.  相似文献   

11.
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.  相似文献   

12.
In the present study, a 14-3-3 protein-encoding gene from Glomus intraradices has been identified after differential hybridization of a cDNA library constructed from the fungus growing in vitro and subjected to drought stress by addition of 25% PEG 6000. Subsequently, we have studied its expression pattern under drought stress in vitro and also when forming natural symbioses with different host plants. The results obtained suggest that Gi14-3-3 gene may be involved in the protection that the arbuscular mycorrhizal (AM) symbiosis confers to the host plant against drought stress. Our findings provide new evidences that the contribution of AM fungi to the enhanced drought tolerance of the host plant can be mediated by a group of proteins (the 14-3-3) that regulate both signaling pathways and also effector proteins involved in the final plant responses.  相似文献   

13.
The role of mycorrhizal fungi in overcoming nutrient limitation to plant growth by enhancing nutrient acquisition, especially phosphorus (P) and nitrogen (N), is well documented. However, in orchids, the importance of mycorrhizal fungi in nutrient acquisition is not as extensively studied as in other plants. Therefore, an in vitro culture system to study the effects of mycorrhizal association on P and N metabolizing enzymes, viz., acid phosphatase, alkaline phosphatase, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Dendrobium chrysanthum was developed. After 90 days of mycorrhizal treatment, activities of acid phosphatase, alkaline phosphatase, NR, NiR and GS were higher in mycorrhizal plantlets than in control plantlets. The hardened plantlets that were initially treated with mycorrhiza under in vitro conditions also showed higher activities of the enzymes investigated. These mycorrhizal plantlets showed higher survival (96.33 %), shoot length (3.7 cm) and shoot fresh weight (0.359 g) as compared to control after 120 days of hardening. The results presented in this study suggest that mycorrhizal association might have increased the assimilation of P and N in D. chrysanthum plantlets, indicating the importance of mycorrhiza in orchids.  相似文献   

14.
15.
Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA11 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.  相似文献   

16.

Background and aims

Year of release of a cultivar reflects the agricultural and breeding practices of its time; we hypothesize that there are differences in mycorrhizal responsiveness of new high yielding and old crop plants and landraces. We evaluated the importance of the year of release on mycorrhizal responsiveness, arbuscular mycorrhizal (AM) fungal root colonization and P efficiency. We also analyzed the effect of experimental treatments, P efficiency (P acquisition and P utilization efficiency) and AM fungal root colonization on a potential mycorrhizal responsiveness trend for year of release.

Methods

We conducted a meta-analysis on 39 publications working on 320 different crop plant genotypes.

Results

New cultivars were less intensely colonized but were more mycorrhiza-responsive (and possibly dependent) compared to ancestral genotypes. This trend was potentially influenced by the moderator variables density, pre-germination, plant, plant type and AMF species. AM root colonization was also important for the mycorrhizal responsiveness trend for year of release, but P efficiency was not.

Conclusions

With the data available we could find no evidence that new crop plant genotypes lost their ability to respond to mycorrhiza due to agricultural and breeding practices.  相似文献   

17.
Despite a large body of literature that describes the effects of arbuscular mycorrhizal colonization on plant response to water deficit, reviews of these works have been mainly in narrative form, and it is therefore difficult to quantify the magnitude of the effect. We performed a meta-analysis to examine the effect of mycorrhizal colonization on growth and yield of plants exposed to water deficit stress. Data were compared in the context of annual vs. perennial plants, herbaceous vs. woody plants, field vs. greenhouse conditions, degree of stress, functional group, regions of plant growth, and mycorrhizal and host species. We found that, in terms of biomass measurements, mycorrhizal plants have better growth and reproductive response under water stress compared to non-mycorrhizal plants. When variables such as habit, life cycle, or water stress level are considered, differences in mycorrhizal effect on plant growth between variables are observed. While growth of both annual and perennial plants is improved by symbiosis, perennials respond more favorably to colonization than annuals. Overall, our meta-analysis reveals a quantifiable corroboration of the commonly held view that, under water-deficit conditions, plants colonized by mycorrhizal fungi have better growth and reproductive response than those that are not.  相似文献   

18.
14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses.  相似文献   

19.
Arbuscular mycorrhizal and dark septate endophyte associations of 31 medicinal plant species collected from the Garden of Medicinal Plants of the Faculty of Pharmacy, Jagiellonian University, Collegium Medicum in Kraków were investigated. Arbuscular mycorrhiza (AM) was found in 30 species; 23 were of the Arum-type, 5—Paris and 2 taxa revealed intermediate morphology. Many plants were strongly colonized by arbuscular mycorrhizal fungi (AMF). The mycelium of dark septate endophytes (DSE) was observed in 21 taxa. However, the percentage of root colonization by these fungi was low. Spores of 15 species of AMF (Glomeromycota) were found in the rhizosphere of the investigated plants. Our results are the first detailed report of both AMF and DSE associations of these plant species. The use of AMF and DSE during the process of medicinal plant cultivation for pharmaceutical purposes is discussed.  相似文献   

20.
The last lowland locality ofGentiana verna in the Czech Republic is a calcareous grassland near Rovná at Strakonice in South Bohemia. This locality was the subject of a recovery programme that included support of the remaining population by micropropagation. The plants were inoculated with arbuscular mycorrhizal fungi (AMF) after their transfer toex vitro and the effect of AMF on their establishment and survival was studied. Although the conventional method of inoculation ofG. verna using spores or colonized root segments as an inoculum source resulted in no or negligible root colonization, the transplantation of gentians to the locality Rovná was successful and the plants became colonized with AMF very rapidly in the field. Successful mycorrhization of gentians under experimental conditions occurred only via the extraradical mycelial network established by neighbouring mycorrhizal plant species (nurse plant effect). Different nurse plant species formed different morphological types of mycorrhiza when inoculated with the same fungal isolate. Gentians always had theParis type of root colonization with intracellular hyphal loops and swellings. Intercellular hyphae, arbuscules and vesicles were not observed. No evidence for a positive growth response was found inG. verna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号