共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro plant regeneration was established in Echinacea pallida, a plant that is commonly used as a folk medicine to treat the common cold, fevers, inflammation and so on. Conditions for callus induction, lateral root and shoot regeneration were determined. Subsequently, two vectors pCHS and pOSAG78, carrying different selection marker genes resistant to kanamycin and hygromycin, respectively, were independently used to transform leaf explants of E. pallida using an Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of the transgene and selection marker gene in obtained transgenic lines. Southern hybridization indicated that the T-DNA insertion in some transgenic E. pallida was single copy. Among them, transformants carrying Petunia chalcone synthase (CHS) were selected for further study. CHS is a key enzyme in the biosynthesis of diverse flavonoids including anthocyanin pigmentation. Here, we analyzed the roles and compared the gene expression of two clusters of CHSs, EpaCHS-A and EpaCHS-B (EpaCHS-B1 and EpaCHS-B2), isolated from E. pallida. Two of the genes, EpaCHS-A and EpaCHS-B1, were abundantly expressed in petals, whereas EpaCHS-B2 was expressed at high levels in leaves. The expression of EpaCHSs remained constant in leaves and roots of Petunia CHS transformants, while EpaCHS-B2 expression was changed in flowers of transgenic plants. The biosynthesis of caffeic acid derivatives, cichoric acid and caftaric acid, was increased in leaves and roots of CHS transformants, respectively, while the amount of echinacoside in roots of transgenic plants was decreased. This is the first report on genetic engineering of E. pallida. The information contained herein can be used as a tool for further study of the biological pathways and secondary metabolism of specific compounds from medicinal Echinacea species. 相似文献
2.
Wissam A. Abou-Alaiwi Shobha D. Potlakayala Stephen L. Goldman Puthiyaparambil C. Josekutty Deepkamal N. Karelia Sairam V. Rudrabhatla 《Plant Cell, Tissue and Organ Culture》2012,109(1):1-8
An efficient transformation system was developed for Centaurea montana by co-cultivation of leaf explants with Agrobacterium tumefaciens strain AGL1 that contained a plasmid harboring the isopentenyl transferase gene under the control of the developmentally
regulated Atmyb32 promoter of Arabidopsis thaliana and the gene encoding for hygromycin resistance under the control of the Cauliflower Mosaic Virus 35S (CaMV35S) promoter.
A total of 990 explants were infected with Agrobacterium, and 18 shoots were regenerated resulting in an overall transformation efficiency of 1.8%. Molecular analyses, including
PCR, Southern blotting and RT-PCR, were performed on T0 and T1 plants to confirm chromosomal integration and expression of the transgene in the phenotypically normal transformed plants.
Transformation of C. montana was also performed using A. tumefaciens supervirulent strain EHA105 harboring the β-glucuronidase (GUS) reporter gene. Expression of the GUS gene in the putative transgenics was confirmed using a histochemical GUS assay. 相似文献
3.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were
transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with
13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls
were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse.
This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash. 相似文献
4.
This paper describes multiple shoot regeneration from leaf and nodal segments of a medicinally important herb Centella asiatica L. on Murashige and Skoog’s (MS) medium supplemented with a range of growth regulators. The highest number of multiple shoots
was observed on MS augmented with 3.0 mg dm−3 N6-benzylaminopurine (BAP) and 0.05 mg dm−3 α-naphthaleneacetic acid (NAA). Leaf explant showed maximum percentage of cultures regenerating shoots (81.6 %), with the
highest shoot number (8.3 shoots per explant) and the shoot length (2.1 cm) whereas, nodal explant showed less number of shoots
with callus formation at the base cut end. Successive shoot cultures were established by repeatedly sub-culturing the original
explant on a fresh medium. Rooting of in vitro raised shoots was best induced on half strength MS supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA) with highest percentage of shoot regenerating roots (76.8 %) with 3–4 roots per shoot. Plantlets
were acclimated in Vermi-compost and eventually established in soil. Contents of chlorophyll, total sugars, reducing sugars and proteins were estimated in
leaf tissue from both in vivo and in vitro raised plants. Chlorophyll content was higher in in vivo plants, whereas other three components were higher in in vitro plants. 相似文献
5.
Qi Zhu Fengtao Wu Feng Ding Dong Ye Yongqin Chen Yi Li Yang Zhifan 《Plant Cell, Tissue and Organ Culture》2009,96(3):317-324
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important
steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and
female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive
to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation
medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three
days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for
formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh
selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of
the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to
produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated
from initial infected callus explants. 相似文献
6.
Wen-Hsi Kuo Yu-Ling Hung Ho-Wei Wu Zhao-Jun Pan Chwan-Yang Hong Chun-Neng Wang 《Plant Cell, Tissue and Organ Culture》2018,134(2):301-316
The florist’s Gloxinia, Sinningia speciosa, which bears considerable flower trait variations, is an emerging model plants to study floral traits development. However, the investigation of the genetic information linking these floral traits is limited due to a lack of a reliable and efficient transformation system for functional studies. This study aims to optimize a stable genetic transformation system for S. speciosa. Detailed regeneration process and tissue culture parameters are also elucidated. The results show that the plant regeneration, initiated from a single perivascular parenchyma cell, can be induced from leaf and petiole explants in the presence of 1 mg/mL 6-benzylaminopurine (BA) and 0.1 mg/mL naphthalene-acetic acid (NAA) through embryogenesis. In the presence of 0.1 mg/mL NAA only, the adventitious roots form prior to the re-differentiation of shoot tissues in leaf explants. When the proximal end of the petiole is orientated upright with the distal end to the medium, it results in higher success of regeneration, suggesting that hormone supplies must follow endogenous basipetal auxin polarity. Using a glucuronidase (GUS) reporter gene construct, maximum transformation (3.13%) was obtained after a 3 day pre-culture and 5 day co-culture from cotyledons and leaves of 3-week-old seedlings inoculating Agrobacterium strain EHA105. The putative transgenic lines were validated by RT-PCR, Southern blotting and GUS activity. Our result demonstrates that young seedlings are the best material for transformation, probably because young leaves are only a few cell layers thick allowing inner perivascular cell (the origin of regeneration) to be more accessible for Agrobacterium infiltration. 相似文献
7.
Pooja Singh Sana Khan Susheel Kumar Laiq ur Rahman 《Plant Cell, Tissue and Organ Culture》2017,129(1):35-44
Rose-scented geranium is an important aromatic herb, have eminent for oil. The oil of geranium commercially utilized in the perfumery, cosmetic and aromatherapy industries all over the world. It is also helpful to cure many of the diseases, since it possess antibacterial, antifungal, antioxidant, anti-inflammatory and anticancer activities. However rose scented geranium suffer from several biotic and abiotic stresses, which reduced the yield of oil. So there is need to genetically improve the geranium using biotechnological approaches. The present study demonstrates the establishment of direct regeneration and Agrobacterium tumefaciens (LBA4404) mediated transformation protocol in Pelargonium graveolens (cv. CIM-BIO 171). Different media combinations such as benzyl amino purine (BAP), kinetin, naphthalene acetic acid (NAA), and adenine di-sulphate (ADS) were standardised to induce direct regeneration in P. graveolens. The maximum regeneration frequency i.e. 90.56?±?1.2% per explant was achieved from petiolar segments in medium containing 2.5 mg/l BAP, 0.1 mg/l NAA, 1 mg/l ADS. However, with the leaf explants only 45.94?±?2.91% frequency was achieved. In the present study, A. tumefaciens strain LBA4404 was used carrying binary vector pBI121 with the gusA as a reporter gene and neomycin phosphotransferase II (nptII) gene as a plant selectable marker. Parameters like bacterial optical density, infection time, acetosyringone concentration and kanamycin concentration were optimised to achieve maximum transformation frequency (69.5?±?2.3%).The putative transgenic shoots were subsequently rooted on half strength MS medium and successfully transferred to the greenhouse. The transgenic plants were characterised by gus histochemical assay, PCR analysis (nptII-786 bp and gus A- 1707 bp) and Southern hybridization tests using gusA gene probe. The regeneration as well as transformation protocol will no doubt provide the basis to decipher the insights of metabolic pathways in geranium. Also could be useful for genetic improvement, to make it more tolerant/resistant against biotic and abiotic stresses and ultimately fruitful for Indian farmers in agronomic traits like high biomass, oil content, yield and better quality. 相似文献
8.
9.
A genetic transformation system has been developed for callus cells of Crataegus
aronia using Agrobacterium
tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with
5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different
types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red
colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli
were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this
is the first time to report an Agrobacterium-mediated transformation system in Crataegus
aronia. 相似文献
10.
<Emphasis Type="Italic">Agrobacterium</Emphasis>-mediated genetic transformation of <Emphasis Type="Italic">Perilla frutescens</Emphasis> 总被引:3,自引:0,他引:3
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies. 相似文献
11.
Smrati Mishra Shilpi Bansal Rajender Singh Sangwan Neelam S. Sangwan 《Journal of plant biochemistry and biotechnology.》2016,25(2):191-198
Withania somnifera one of the most reputed Indian medicinal plant has been extensively used in traditional and modern medicines as active constituents. A high frequency genotype and chemotype independent Agrobacterium-mediated transformation protocol has been developed for W. somnifera by optimizing several factors which influence T-DNA delivery. Leaf and node explants of Withania chemotype was transformed with A. tumefaciens strain GV3101 harboring pIG121Hm plasmid containing the gusA gene encoding β-glucuronidase (GUS) as a reporter gene and the hptII and the nptII gene as selection markers. Various factors affecting transformation efficiency were optimized; as 2 days preconditioning of explants on MS basal supplemented with TDZ 1 μM, Agrobacterium density at OD600 0.4 with inclusion of 100 μM acetosyringone (As) for 20 min co-inoculation duration with 48 h of co-cultivation period at 22 °C using node explants was found optimal to improved the number of GUS foci per responding explant from 36?±?13.2 to 277.6?±?22.0, as determined by histochemical GUS assay. The PCR and Southern blot results showed the genomic integration of transgene in Withania genome. On average basis 11 T0 transgenic plants were generated from 100 co-cultivated node explants, representing 10.6 % transformation frequency. Our results demonstrate high frequency, efficient and rapid transformation system for further genetic manipulation in Withania for producing engineered transgenic Withania shoots within very short duration of 3 months. 相似文献
12.
A protocol was developed for Agrobacterium-mediated genetic transformation of Acacia mangium using rejuvenated shoots as the explant. Axillary buds and shoot apices of adult trees were rejuvenated by culturing them on Murashige and Skoog (MS) medium, and stem segments of rejuvenated shoots were co-cultured with Agrobacterium tumefaciens strain LBA4404 harbouring binary vector pBI121. The selection for transgenic shoots was performed through five consecutive steps on MS medium supplemented with 1.0 mg/l thidiazuron, 0.25 mg/l indole-3-acetic acid and different concentrations of geneticin (G418; 12–30 mg/l) and timentin (T; 50–300 mg/l) in the following order: 12 mg/l G418 and 300 mg/l T for 30 days, 20 mg/l G418 and 200 mg/l T for 60 days, 30 mg/l G418 and 100 mg/l T for 30 days, 12 mg/l G418 and 50 mg/l T for 30 days, and finally 15 mg/l G418 and 5 mg/l gibberellic acid (GA3) for 60 days. Thirty-four percent of the stem segments produced resistant multiple adventitious shoot buds, of which 30% expressed the β-glucuronidase gene. The shoot buds were subjected to repeated selection on MS medium supplemented with 2.0 mg/l 6-benzylaminopurine, 2.5 mg/l GA3 and 20 mg/l G418. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 2.0 mg/l α-naphthaleneacetic acid, 0.1 mg/l kinetin and 20 mg/l G418. Genomic Southern blot hybridization confirmed the incorporation of the NPTII gene into the host genome. 相似文献
13.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR)
tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay
showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving
the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation. 相似文献
14.
As a first step in the development of a successful Agrobacterium tumefaciens mediated transformation method for kenaf, factors influencing the successful T-DNA integration and expression (as measured by the GUS expression) were investigated. Transformation was carried out using two kenaf cultivars and Agrobacterium strain EHA 105 carrying different vectors, plasmid pIG 121-Hm or pEC:gus. Pre-culturing the explants for 2days in benzyl adenine containing medium, and wounding the explant before inoculation were found to enhance the transient GUS expression. Increasing the duration of pre-culture and co-culture period enhanced the transient GUS expression up to a threshold level. Increased transient GUS expression did not correlate with an increase in stable expression. Gene integration was confirmed by PCR analysis. 相似文献
15.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production. 相似文献
16.
Wen-Hsi Kuo Yu-Ling Hung Ho-Wei Wu Zhao-Jun Pan Chwan-Yang Hong Chun-Neng Wang 《Plant Cell, Tissue and Organ Culture》2018,132(2):317-327
The objective of this research was to induce mitotic chromosome doubling in Anemone sylvestris L. The mitosis inhibitor oryzalin was directly added to the induction medium at 1, 2, 5, 10 and 15 μM for 8, 10 or 12 weeks of cultivation. Three tetraploid plants (2n?=?4x?=?32), 0.8% (polyploidization efficiency), were obtained from diploid plants (2n?=?2x?=?16) in three treatments (1 μM for 10 weeks, 5 μM for 8 weeks and 8 μM for 10 weeks). Ploidy level was confirmed by flow cytometry. Morphological characteristics (e.g. flower diameter, total plant height, leaf area) and chlorophyll content differences between diploid and tetraploid A. sylvestris were observed together with polyphenol content and antioxidant activity. The inter primer binding sites markers were used for evaluation of polymorphism. New genotypes with different morphological and biological characteristics were obtained through somatic polyploidization. The tetraploid plants were stronger, more vigorous and had an early flowering, which is essential for its use as an ornamental plant. The iPBS analysis showed unique amplicons that can be used for the purposes of molecular identification of tetraploid plants of A. sylvestris in the future. The results demonstrate the first report of in vitro induction of tetraploids of A. sylvestris. 相似文献
17.
Epicotyl segments of kumquat (Fortunella crassifolia Swingle cv. Jindan) were transformed with Agrobacterium tumefaciens GV3101 harboring neomycin phosphotransferase gene (npt II) containing plant expression vectors. Firstly, the explants were cultured in darkness at 25 °C on kanamycin free shoot
regeneration medium (SRM) for 3 d, and then on SRM supplemented with 25 mg dm−3 kanamycin and 300 mg dm−3 cefotaxime for 20 d. Finally, they were subcultured to fresh SRM containing 50 mg dm−3 kanamycin monthly and grown under 16-h photoperiod. Sixty five kanamycin resistant shoots were regenerated from 500 epicotyl
explants after four-month selection. Shoot tips of 20 strong shoots were grafted to 50-day-old kumquat seedlings and survival
rate was 55 %. Among the 11 whole plants, 3 were transgenic as confirmed by Southern blotting. This is the first report on
transgenic kumquat plants, and a transformation efficiency of 3.6 % was achieved. 相似文献
18.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433). 相似文献
19.
Dandelion plants, the genus Taraxacum, are used in herbal medicine owing to their choleretic, diuretic and anti-carcinogenic activities and several medicinal compounds have been isolated from the roots of these plants. Metabolic manipulation of secondary metabolite biosynthesis is a potential strategy to improve the production of high-value secondary metabolites. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is known to control a key regulatory step in the isoprenoid pathway. We report an efficient transformation protocol for stable introduction of HMGR into dandelion plants (Taraxacum platycarpum H. Dablstaed), which is essential for the biotechnological approach. The Agrobacterium tumefaciens strain EHA105 containing the binary vector, pCAMBIA1301, with GUS and HMGR genes, showed high transformation efficiency after 3–5 week hygromycin selection. Southern blotting, GUS staining and RT-PCR analyses demonstrated stable integration of one copy of the HMGR gene into the dandelion genome. Expression of the integrated genes was particularly eminent in root tissues of primary transformant plants. The establishment of an efficient transformation method may facilitate the improvement of medicinal plant in terms of the accumulation levels of secondary metabolites. 相似文献
20.
An improved protocol for genetic transformation of juvenile explants of Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.), Duncan (Citrus paradisi Macf.), Hamlin (Citrus sinensis (L.) Osbeck) and Mexican Lime (Citrus aurantifolia Swingle) cultivars using a vector containing a bifunctional egfp-nptII fusion gene is described. Several parameters were investigated to optimize genetic transformation of these four cultivars.
It was determined that a short preincubation in hormone rich liquid medium and subculture of Agrobacterium for 3 h in YEP medium containing 100 μM acetosyringone were required for improvement of transformation efficiency. Co-cultivation
duration as well as addition of acetosyringone to co-cultivation medium also played an important role in transformation efficiency
as did OD600 value of the Agrobacterium suspension used for transformation. We regenerated numerous EGFP expressing transgenic lines from all four cultivars. Based
on these results, we conclude that genetic transformation of citrus is cultivar specific and optimization of conditions for
maximum transgenic production are required for each individual cultivar. 相似文献