首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Developmental biologists distinguish between mosaic embryos, in which the removal of a cell or group of cells results in a defective adult, andregulative embryos, in which the adult appears normal in spite of such removal. I suggest that the mosaic/regulative distinction is best viewed by contrastingwithin-cell signals(i.e., a cell can develop autonomously, perhaps on the basis of instructions derived from the mother) againstbetween-cell signals (i.e., development, and the origin of form and shape, is based on intercellular communication). This distinction is not rigid; the same embryo can make use of both within-cell and between-cell signals. During evolution, signalling between cells is likely to have become advantageous as organisms increased in size. However, the fact that an embryo displays regulative behaviour may be an automatic consequence of the way it develops rather than an evolved adaptation.  相似文献   

2.
The environment plays instructive roles in development and selective roles in evolution. This essay reviews several of the instructive roles whereby the organism has evolved to receive cues from the environment in order to modulate its developmental trajectory. The environmental cues can be abiotic (such as temperature or photoperiod) or biotic (such as those emanating from predators, conspecifics, or food), and the “alteration” produces a normal, not a pathological, phenotype, that is appropriate for the environment. In addition, symbiotic organisms can produce important signals during normal development. Environmental cues can be obligatory, such that the organism cannot develop without the environmental cue. These cues often permit and instruct the organism to proceed from one developmental stage to another, as when larvae receive cues to settle and undergo metamorphosis from substrates. Such obligatory cues can also be given by symbionts, as when Wolbachia bacteria prevent apoptosis in developing ovaries of some wasps. Other environmental cues can be used facultatively, allowing organisms to follow different developmental trajectories depending on whether the cue is present or not. This can be seen in the temperature‐dependent determination of sex in many reptiles and in the determination of thermotolerance in aphids by their symbiotic bacteria. Signaling from the environment is essential in development, and co‐development appears to be normative between symbionts and their hosts. Here, one sees the reciprocal induction of gene expression, just as within the embryonic organism. The ability of organisms to respond to environmental cues by producing different phenotypes may be critically important in evolution, and it may be an essential feature that can facilitate or limit evolution.  相似文献   

3.
朱文静  刘志玮 《遗传》2021,(4):375-386
小鼠发育代谢表型库(Mouse Developmental and Metabolic Phenotype Repository,MDMPR)是一个致力于小鼠资源和表型数据实时共享的开放性平台,它依托于科技部重点研发计划“发育编程及其代谢调节”专项项目“建立小鼠发育代谢表型库”。该项目预计在5年内完成500个发育代谢相关小鼠敲除模型的建立,并对其表型数据进行标准化的解析、建立表型数据库。MDMPR作为一个资源及数据集成的库,由多个子系统作为支撑,包括ES细胞数据库、项目管理系统、繁育管理系统、精子库管理系统、表型分析系统,信息化管理深入到项目中每个环节,从基因突变ES细胞制备、基因突变小鼠制备、小鼠繁育,精子冻存到最终的表型分析、数据处理及展示,保证了MDMPR产生数据的真实性及实时性。MDMPR除了不断地推进项目进行,增加自身产生的数据外,也在积极的整合其他的资源及数据,如人特异性基因敲除ES细胞库、蛋白相互作用数据库(STRING)、核心转录调节环路(dbCoRc)和Enhancer-Indel数据库,今后还将进一步整合,帮助发育代谢及其他领域的研究人员能够一站式的获取所需资源和数据、加快研究进程,最终服务于全人类的医疗事业。  相似文献   

4.
5.
When the history of life on earth is viewed as a history of cell division, all of life becomes a single cell lineage. The growth and differentiation of this lineage in reciprocal interaction with its environment can be viewed as a developmental process; hence the evolution of life on earth can also be seen as the development of life on earth. Here, in reviewing this field, some potentially fruitful research directions suggested by this change in perspective are highlighted. Variation and selection become, for example, bidirectional information flows between scales, while the notions of “cooperation” and “competition” become scale relative. The language of communication, inference, and information processing becomes more useful than the language of causation to describe the interactions of both homogeneous and heterogeneous living systems at any scale. Emerging scale-free theoretical frameworks such as predictive coding and active inference provide conceptual tools for reconceptualizing biology as the study of a unified, multiscale dynamical system.  相似文献   

6.
Ideas of proponents and opponents of programmed aging concerning the expediency of this phenomenon for the evolution of living organisms are briefly considered. We think that evolution has no “gerontological” purpose, because the obligate restriction of cell proliferation during the development of multicellular organisms is a factor that “automatically” triggers aging due to the accumulation of various macromolecular lesions in cells as a result of the suppression, or even complete cessation of emergence of new, intact cells. This leads to the “dilution” of stochastic damage (the most important of which is DNA damage) at the level of the entire cellular population. Some additional arguments in favor of the inexpediency of aging for both species and individuals are also listed.  相似文献   

7.
Two experiments were conducted with guinea pigs to test implications of a model which holds that social reinstatement tendencies and attempts to evade predation are the primary factors influencing how organisms initially react when placed in an open field. Because of the age-related reduction in need for maternal care, vocalization and ambulation latencies increased with age, and in support of the hypothesis that humans are perceived as predators, subjects tested in the presence of a human observer were less likely to move or vocalize than those tested alone. The data on vocalization latencies strongly suggest that the species- specific “whistle” of guinea pigs is a functional mammalian analog to the so-called “distress call” of domestic fowl.  相似文献   

8.
9.
Principles of constructivism are used here to explore how organisms develop tools, subagents, scaffolds, signs, and adaptations. Here I discuss reasons why organisms have composite nature and include diverse subagents that interact in partially cooperating and partially conflicting ways. Such modularity is necessary for efficient and robust functionality, including mutual construction and adaptability at various time scales. Subagents interact via material and semiotic relations, some of which force or prescribe actions of partners. Other interactions, which I call “guiding”, do not have immediate effects and do not disrupt the evolution and learning capacity of partner agents. However, they modify the extent of learning and evolutionary possibilities of partners via establishment of scaffolds and constraints. As a result, subagents construct reciprocal scaffolding for each other to rebalance their communal evolution and learning. As an example, I discuss guiding interactions between the body and mind of animals, where the pain system adjusts mind-based learning to the physical and physiological constraints of the body. Reciprocal effects of mind and behaviors on the development and evolution of the body includes the effects of Lamarck and Baldwin.  相似文献   

10.
One of the great unanswered questions in the biology of both plants and animals is “How do simple groups of embryonic cells develop into complex and highly structured organisms, or parts of organisms?” The answers are only beginning to be known; the processes involved include establishment of positional information, and its interpretation into patterns of cell division and cellular differentiation. One remarkable and attractive example of the formation of a complex structure from a simple group of cells is the development of a flower, with its characteristic types, numbers and patterns of floral organs. Because of the ease with which plants (especially the plantArabidopsis thaliana) can be manipulated in the laboratory, flowers provide a unique opportunity to learn some of the fundamental rules of development.  相似文献   

11.
Cells of multicellular organisms need to communicate with each other and have evolved various mechanisms for this purpose, the most direct and quickest of which is through channels that directly connect the cytoplasms of adjacent cells. Such intercellular channels span the two plasma membranes and the intercellular space and result from the docking of two hemichannels. These channels are densely packed into plasma-membrane spatial microdomains termed “gap junctions” and allow cells to exchange ions and small molecules directly. A hemichannel is a hexameric torus of junctional proteins around an aqueous pore. Vertebrates express two families of gap-junction proteins: the well-characterized connexins and the more recently discovered pannexins, the latter being related to invertebrate innexins (“invertebrate connexins”). Some gap-junctional hemichannels also appear to mediate cell-extracellular communication. Communicating junctions play crucial roles in the maintenance of homeostasis, morphogenesis, cell differentiation and growth control in metazoans. Gap-junctional channels are not passive conduits, as previously long regarded, but use “gating” mechanisms to open and close the central pore in response to biological stimuli (e.g. a change in the transjunctional voltage). Their permeability is finely tuned by complex mechanisms that have just begun to be identified. Given their ubiquity and diversity, gap junctions play crucial roles in a plethora of functions and their dysfunctions are involved in a wide range of diseases. However, the exact mechanisms involved remain poorly understood.  相似文献   

12.
This study is an attempt to determine how much individuals should invest in social communication, depending on the type of relationships they may form. Two simple models of social relationships are considered. In both models, individuals emit costly signals to advertise their “quality” as potential friends. Relationships are asymmetrical or symmetrical. In the asymmetrical condition (first model), we observe that low‐quality individuals are discouraged from signaling. In the symmetrical condition (second model), all individuals invest in communication. In both models, high‐quality individuals (elite) do not compete and signal uniformly. The level of this uniform signal and the size of the “elite” turn out to be controlled by the accuracy of signals. The two models may be relevant to several aspects of animal and human social communication.  相似文献   

13.
Upon starvation, Dictyostelium discoideum cells halt cell proliferation, aggregate into multicellular organisms, form migrating slugs, and undergo morphogenesis into fruiting bodies while differentiating into dormant spores and dead stalk cells. At almost any developmental stage cells can be forced to dedifferentiate when they are dispersed and diluted into nutrient broth. However, migrating slugs can traverse lawns of bacteria for days without dedifferentiating, ignoring abundant nutrients and continuing development. We now show that developing Dictyostelium cells revert to the growth phase only when bacteria are supplied during the first 4 to 6 h of development but that after this time, cells continue to develop regardless of the presence of food. We postulate that the cells' inability to revert to the growth phase after 6 h represents a commitment to development. We show that the onset of commitment correlates with the cells' loss of phagocytic function. By examining mutant strains, we also show that commitment requires extracellular cyclic AMP (cAMP) signaling. Moreover, cAMP pulses are sufficient to induce both commitment and the loss of phagocytosis in starving cells, whereas starvation alone is insufficient. Finally, we show that the inhibition of development by food prior to commitment is independent of contact between the cells and the bacteria and that small soluble molecules, probably amino acids, inhibit development during the first few hours and subsequently the cells become unable to react to the molecules and commit to development. We propose that commitment serves as a checkpoint that ensures the completion of cooperative aggregation of developing Dictyostelium cells once it has begun, dampening the response to nutritional cues that might inappropriately block development.  相似文献   

14.
“Integration” is a key term in describing how nervous system can perform high level functions. A first condition to have “integration” is obviously the presence of efficient “communication processes” among the parts that have to be combined into the harmonious whole. In this respect, two types of communication processes, called wiring transmission (WT) and volume transmission (VT), respectively, were found to play a major role in the nervous system, allowing the exchange of signals not only between neurons, but rather among all cell types present in the central nervous system (CNS). A second fundamental aspect of a communication process is obviously the recognition/decoding process at target level. As far as this point is concerned, increasing evidence emphasizes the importance of supramolecular complexes of receptors (the so called receptor mosaics) generated by direct receptor–receptor interactions. Their assemblage would allow a first integration of the incoming information already at the plasma membrane level. Recently, evidence of two new subtypes of WT and VT has been obtained, namely the tunnelling nanotubes mediated WT and the microvesicle (in particular exosomes) mediated VT allowing the horizontal transfer of bioactive molecules, including receptors, RNAs and micro-RNAs. The physiological and pathological implications of these types of communication have opened up a new field that is largely still unexplored. In fact, likely unsuspected integrative actions of the nervous system could occur. In this context, a holistic approach to the brain-body complex as an indissoluble system has been proposed. Thus, the hypothesis has been introduced on the existence of a brain-body integrative structure formed by the “area postrema/nucleus tractus solitarius” (AP/NTS) and the “anteroventral third ventricle region/basal hypothalamus with the median eminence” (AV3V-BH). These highly interconnected regions operate as specialized interfaces between the brain and the body integrating brain-borne and body-borne neural and humoral signals.  相似文献   

15.
Living organisms have evolved a complex network of mechanisms to face the unforeseen nutritional and environmental circumstances imposed on their natural habitats, commonly termed “stress”. To learn more about these mechanisms, several challenges are usually applied in the laboratory, namely nutrient starvation, heat shock, dehydration, oxidative exposures, etc. Yeasts are chosen as convenient models for studying stress phenomena because of their simple cellular organization and the amenability to genetic analysis. A vast scientific literature has recently appeared on the defensive cellular responses to stress. However, this plethora of studies covers quite different experimental conditions, making any conclusions open to dispute. In fact, the term “yeast stress” is rather confusing, since the same treatment may be very stressful or irrelevant, depending on the yeast. Customary expressions such as “gentle stress” (non-lethal) or “severe stress” (potentially lethal) should be precisely clarified. In turn, although prototypic yeasts share a common repertoire of signalling responsive pathways to stress, these are adapted to the specific ecological niche and biological activity of each particular species. What does “stress” really mean? Before we go any deeper, we have to define this uncertain meaning along with a proper explanation concerning the terms and conditions used in research on yeast stress.  相似文献   

16.
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed “membrane nanotubes” (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.  相似文献   

17.
Cell-to-cell communication is vital for animal tissues and organs to develop and function as organized units. Throughout development, intercellular communication is crucial for the generation of structural diversity, mainly by the regulation of differentiation and growth. During these processes, several signaling molecules function as messengers between cells and are transported from producing to receptor cells. Thus, a tight spatial and temporal regulation of signaling transport is likely to be critical during morphogenesis. Despite much experimental and theoretical work, the question as to how these signals move between cells remains. Cell-to-cell contact is probably the most precise spatial and temporal mechanism for the transference of signaling molecules from the producing to the receiving cells. However, most of these molecules can also function at a distance between cells that are not juxtaposed. Recent research has shown the way in which cells may achieve direct physical contact and communication through actin-based filopodia. In addition, increasing evidence is revealing the role of such filopodia in regulating spatial patterning during development; in this context, the filopodia are referred to as cytonemes. In this review, we highlight recent work concerning the roles of these filopodia in cell signaling during development. The processes that initiate and regulate the formation, orientation and dynamics of cytonemes are poorly understood but are potentially extremely important areas for our knowledge of intercellular communication.  相似文献   

18.
19.
The elaboration of pattern within insect segments is a well-studied example of cellular patterning during development. This process requires that each cell develop appropriately for its position. Experimental embryology suggests that intercellular communication plays a key role in imparting positional information to cells. Drosophila genetics has identified numerous genes whose activity is required for patterning within segments, and whose molecular genetic analyses suggest they constitute and control cell communication circuits. Particular genes are expressed or required by cells that will follow distinct developmental pathways, and some appear to confer or interpret intercellular signals. Other patterning genes are ubiquitously required and may provide the machinery through which the signals are transmitted.  相似文献   

20.
The common ancestor of all photosynthetic prokaryotes and organelles contained chlorophyll (Chl) a. All green and purple photosynthetic bacteria descended from a common bacteriochlorophyll (Bchl) a-containing ancestor which diverged from the Chl a line. Separate PS-I and PS-II reaction centers may have evolved before the appearance of Bchl a. When the transition to Bchl a occurred, the resultant organism contained two types of reaction center, “PS-I” and “PS-II.” One line of development eliminated “PS-II” and evolved into the green bacteria. The other line eliminated “PS-I” and became the purple bacteria. In the Chl a-containing organisms the evolution of PS-II continued until oxygen evolution was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号