首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Yang J  Xie Z  Glover BJ 《The New phytologist》2005,165(2):623-632
NF-Y is a ubiquitous CCAAT-binding factor composed of NF-YA, NF-YB and NF-YC. Multiple genes encoding NF-Y subunits have been identified in plant genomes. It remains unclear whether the duplicate genes underwent different evolutionary patterns. Likelihood-ratio tests were used to examine whether the amino acid substitution rates are the same between duplicate genes. The influences of selection on evolution were evaluated by comparing the conservative and radical amino acid substitution rates, as well as maximum-likelihood analysis. Some NF-YB and NF-YC duplicates showed significant evidence of asymmetric evolution but not the NF-YA duplicates. Most amino acid replacements in the NF-YB and NF-YC duplicates result in changes in hydropathy, polar requirement and polarity. The physicochemical changes in the sequences of NF-YB seem to be coupled to asymmetric divergence in gene function. Plant NF-Y genes have evolved in different patterns. Relaxed selective constraints following gene duplication are most likely responsible for the unequal evolutionary rates and distinct divergence patterns of duplicate NF-Y genes. Positive selection may have promoted amino acid hydropathy changes in the NF-YC duplicates.  相似文献   

5.
6.
7.
Late embryogenesis abundant (LEA) proteins are identified as a large and highly diverse group of polypeptides accumulating in response to cellular dehydration in many organisms. However, there are only very limited reports of this protein family in maize until this study. In the present paper, we identified 32 LEA genes in maize. A total of 83 LEA proteins including 51 members in Arabidopsis and 32 putative members in maize were classified into nine groups. Gene organization and motif compositions of the LEA members are highly conserved in each of the groups, indicative of their functional conservation. The predicted ZmLEA genes were non-random distributed across chromosomes, and transposition event and segmental duplication contributed to the expansion of the LEA gene family in maize. Some abiotic stress-responsive cis-elements were also found in the promoters of ZmLEA genes. Microarray expression analyses revealed different accumulation patterns of ZmLEA family members. Moreover, some members of ZmLEAs were regulated under IAA and some abiotic stresses. This study will provide comprehensive information for maize LEA gene family and may pave the way for deciphering their functions in further studies.  相似文献   

8.
9.
10.
11.
The cold shock domain proteins (CSDPs) are small group of nucleic acid-binding proteins that act as RNA chaperones in growth regulation, development, and stress adaptation in plants. The functions of CSDPs have been studied in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), wheat (Triticum aestivum), and Chinese cabbage (Brassica rapa). To gain insight into the function of CSDPs in tomato (Solanum lycopersicum), we performed a genome-wide analysis of CSDPs through in silico characterization and expression profiling in different organs and in response to different abiotic stress and phytohormone treatments. We identified five non-redundant SlCSDP genes. The evolutionary analysis and phylogenetic classification indicated that tomato CSDPs are more closely related to potato than those of others. The five SlCSDP genes are distributed on four of the 12 tomato chromosomes and no segmental or tandem duplication events are detected among them. Expression analysis showed broad expression patterns with strong expression in fruit development and ripening. Expression of individual SlCSDP genes was significantly altered by stress and phytohormone treatments. SlCSDP2, SlCSDP3, and SlCSDP4 were highly induced by all four abiotic stresses and by phytohormone treatment in tomato. These findings provide a foundation for future research towards functional biological roles of CSDP gene in particular to develop tomato cultivars with large size, early ripening, and abiotic stress tolerance.  相似文献   

12.
The protein phosphatase 2Cs (PP2Cs) have been demonstrated to act as negative modulators of protein kinase and to participate in stress signal transduction, as well as plant growth and productivity processes. Populus euphratica is so extraordinarily adaptable to abiotic stresses that it is regarded as a potential model plant for exploring resistance mechanisms of woody plants. To gain insight into the functional characteristics of PP2C genes in P. euphratica, 117 non-redundant PeuPP2C-encoding genes were identified from the whole genome. These members were classified into 13 groups (A–M), each of which was relatively conserved in gene structure and protein domain. A total of 39 paralogous pairs were found to be generated by whole genome duplication events, and Ka/Ks analysis indicated that these paralogous pairs had evolved mainly from purifying selection. The cis-acting elements and expression patterns showed that all the PeuPP2Cs were involved in response to single or multiple stresses including drought, salinity, heat, cold, and ABA. Taken together, our results summarized the genome-wide characterization of PeuPP2Cs and their expression profiling across different tissues and under multiple abiotic stresses in P. euphratica. These data provide a foundation to further investigate potential function of PeuPP2Cs in conferring tolerance to various stresses in P. euphratica.  相似文献   

13.
Stress-associated proteins (SAPs) are a novel class of zinc finger proteins that extensively participate in abiotic stress responses. To date, no overall analysis and expression profiling of SAP genes in woody plants have been reported. Populus euphratica is distributed in desert regions and is extraordinarily adaptable to abiotic stresses. Thus, it is regarded as a promising candidate for studying abiotic stress resistance mechanisms of woody plants. In this study, 18 non-redundant SAP genes were identified from the genome of P. euphratica using basic local alignment search tool algorithms and functional domain verification. Among these 18 PeuSAP genes, 15 were intronless. To investigate the evolutionary relationships of SAP genes in P. euphratica and other Salicaceae plants, phylogenetic analyses were performed. Subsequently, the expression profiles of the 18 PeuSAP genes were analyzed in different tissues and under various stresses (drought, salt, heat, cold, and abscisic acid (ABA) treatment) using quantitative real-time PCR. Tissue expression analysis indicated that PeuSAPs showed no tissue specificity. PeuSAPs were induced by multiple abiotic stresses, especially drought, salt, and heat stresses, perhaps because of abundant cis-acting heat shock elements and drought-inducible elements in the promoter regions of the PeuSAPs. Moreover, single nucleotide polymorphisms (SNPs) variant analysis revealed many synonymous and non-synonymous SNPs in PeuSAP genes, but the zinc finger structure was conserved during evolution. These results provide an overview of the SAP gene family in P. euphratica and a reference for further functional research on PeuSAP genes.  相似文献   

14.
15.
16.
17.
18.
19.
FK506-binding proteins (FKBPs), which belong to the peptidyl-prolyl cis/trans isomerase superfamily, are involved in plant response to abiotic stresses. A number of FKBP family genes have been isolated in plants, but little has been reported of FKBP genes in maize. In this study, a drought-induced FKBP gene, ZmFKBP20-1, was isolated from maize and was characterized for its role in stress responses using gene expression, protein subcellular localization, transformation in Arabidopsis, expression patterns of the stress-responsive genes, and physiological parameter analysis. During drought and salt stresses, ZmFKBP20-1 transgenic Arabidopsis plants exhibited enhanced tolerance, which was concomitant with the altered expression of stress/ABA-responsive genes, such as COR15a, COR47, ERD10, RD22, KIN1, ABI1, and ABI2. The resistance characteristics of ZmFKBP20-1 overexpression were associated with a significant increase in survival rate. These results suggested that ZmFKBP20-1 plays a positive role in drought and salt stress responses in Arabidopsis and provided new insights into the mechanisms of FKBP in response to abiotic stresses in plants.  相似文献   

20.
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号