共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI-Chol/pCMS-EGFP complexes in Jurkat cells showed high levels of expressed Green Fluorescent Protein (GFP) with little toxicity as determined by flow cytometry. These novel water-soluble lipopolymers provided good transfection efficiency with other desirable characteristics such as water solubility, free primary amino groups for efficient DNA condensation and high buffer capacity that indicated the possibility of efficient endosomal release. 相似文献
2.
Christensen LV Chang CW Kim WJ Kim SW Zhong Z Lin C Engbersen JF Feijen J 《Bioconjugate chemistry》2006,17(5):1233-1240
Poly(amido ethylenimine) polymers, a new type of peptidomimetic polymer, containing multiple disulfide bonds (SS-PAEIs) designed to degrade after delivery of plasmid DNA (pDNA) into the cell were synthesized and investigated as new carriers for triggered intracellular gene delivery. More specifically, three SS-PAEIs were synthesized from Michael addition reactions between cystamine bisacrylamide (CBA) and three different ethylene amine monomers, i.e., ethylenediamine (EDA), diethylenetriamine (DETA), or triethylenetetramine (TETA). Complete addition reactions were confirmed by (1)H NMR. The molecular weight, buffer capacity, and relative degree of branching for each SS-PAEI was determined by gel permeation chromatography (GPC), acid-base titration, and liquid chromatography-mass spectroscopy (LC-MS), respectively. Physicochemical characteristics of polymer/pDNA complexes (polyplexes) were analyzed by gel electrophoresis, particle size, and zeta-potential measurements. All three SS-PAEIs effectively complex pDNA to form nanoparticles with diameters less than 200 nm and positive surface charges of approximately 32 mV. The in vitro gene transfer properties of SS-PAEIs were evaluated using mouse embryonic fibroblast cell (NIH3T3), primary bovine aortic endothelial cell (BAEC), and rat aortic smooth muscle cell (A7R5) lines. Interestingly, polyplexes based on all three SS-PAEIs exhibited remarkably high levels of reporter gene expression with nearly 20x higher transfection efficiency than polyethylenimine 25k. The high transfection efficiency was maintained in the presence of 10% serum in the transfection medium. Furthermore, confocal microscopy experiments using labeled pDNA indicated that polyplexes of SS-PAEI displayed greater intracellular distribution of pDNA as compared to PEI, most likely due to environmentally triggered release. Therefore, SS-PAEIs are a new class of transfection agents that facilitate high gene expression while maintaining a low level of toxicity. 相似文献
3.
Fiore GL Edwards JM Payne SJ Klinkenberg JL Gioeli DG Demas JN Fraser CL 《Biomacromolecules》2007,8(9):2829-2835
Ruthenium(II) tris(bipyridine)-centered poly(ethylenimine) (Ru PEI) was synthesized via acid hydrolysis of Ru tris(bipyridine)-centered poly(2-ethyl-2-oxazoline) (Ru PEOX), and the luminescence, DNA entrapment, and transfection efficiencies were evaluated. Emission maxima for Ru PEI samples are red-shifted compared to Ru PEOX precursors, and the luminescence lifetimes are shorter in both methanol and aqueous solutions. Slower oxygen quenching of Ru PEOX and Ru PEI luminescence versus [Ru(bpy)3]Cl2 (bpy = bipyridine) is attributed to polymer shielding effects. Ru PEI luminescence is similar in the presence and absence of DNA. Ru PEI (7900 Da) and linear PEI (L-PEI; 22,000 Da) fully entrapped DNA (5.4 kb; pcDNA) at an N/P ratio of 2. LNCaP prostate cancer cells were transfected with a plasmid encoding for green fluorescent protein using Ru PEI and L-PEI vectors for comparison. For N/P = 48, the transfection efficiency for Ru PEI was approximately 50% relative to that of L-PEI. 相似文献
4.
In this work, the effects of primary amines, ligand targeting, and overall charge on the effectiveness of branched poly(ethylenimine)-hyaluronic acid conjugate (bPEI-HA) zwitterionic gene delivery vectors are investigated. To elucidate the relative importance of each of these parameters, we explored the zeta potential, cytotoxicity, and transfection efficiency for a variety of formulations of bPEI-HA. It was found that the length of the hyaluronic acid (HA) oligosaccharide had the most significant effect on cytotoxicity and transfection efficiency with human mesenchymal stem cells. Test groups of bPEI incorporating HA with a length of 10 saccharides had significantly higher transfection efficiency (14.6 ± 2.0%) and lower cytotoxicity than other formulations tested, with the cytotoxicity of the group containing the greatest mass of 10 saccharide showing similar results as the positive controls at the highest polymer concentration (100 μg/mL). Additionally, molar incorporation of HA, as opposed to the saccharide length and HA mass incorporation, had the greatest effect on zeta potential but a minor effect on both cytotoxicity and transfection efficiency. This work demonstrates the relative importance of each of these tunable design criteria when creating a zwitterionic polymeric gene delivery vector and provides useful specific information regarding the design of bPEI-HA gene delivery vectors. 相似文献
5.
Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers 总被引:5,自引:0,他引:5
Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery. 相似文献
6.
Polyethylenimine (PEI) shows high transfection efficiency and cytoxicity due to its high amine density. The new disulfide cationic polymer, linear poly(ethylenimine sulfide) (l-PEIS), was synthesized for efficient and safe gene delivery. As the amine density of l-PEIS increased, the transfection efficiency also increased. l-PEIS-6 and l-PEIS-8 show transfection efficiencies that are similar to that of PEI. However, cytotoxicity of l-PEIS was not observed due to the biodegradable disulfide bond. The disulfide bonds are stable in the oxidative extracellular condition and can be degraded rapidly in the reductive intracellular condition. The degradation of l-PEIS in HeLa cells was visualized by fluorescence microscopy using the probe-probe dequenching effect of BODIPY-FL fluorescence dye. l-PEIS was degraded completely within 3 h. 相似文献
7.
Poly(1-vinylimidazole) (PVIm) with aminoethyl groups has been synthesized as a new pH-sensitive polycation to enhance cell-specific gene delivery. The resulting aminated PVIm (PVIm-NH2) was water-soluble despite deprotonation of the imidazole groups at physiological pH, as determined by acid-base titration and solution turbidity measurement. Hemolysis assay showed that PVIm-NH2 enhanced membrane disruptive ability at endosomal pH, owing to the protonation of the imidazole groups with a pKa value around 6.0. Agarose gel retardation assay proved that the introduced aminoethyl groups worked as anchor groups to retain DNA. Furthermore, the ternary complex of DNA, PVIm-NH2, and a poly(L-lysine) conjugated with lactose molecules, PLL-Lac, at pH 7.4 dissociated the PLL-Lac polycation by protonation of the imidazole groups of PVIm-NH2 at pH 6.0. The resulting PVIm-NH2/DNA binary complexes easily released DNA, as compared with the PLL-Lac/PVIm-NH2/DNA ternary complex, which was examined by competitive exchange with dextran sulfate. By using PVIm-NH2 as a pH-sensitive DNA carrier, as well as PLL-Lac as a cell-targeting DNA carrier, the resulting ternary complex specifically mediated the gene expression, which depended on the protonation of the imidazole groups, on human hepatoma HepG2 cells with asialoglycoprotein receptors. These results suggest that the cell-specific gene delivery mediated by PLL-Lac was enhanced by PVIm-NH2 as a new pH-sensitive polycation. 相似文献
8.
Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine) 总被引:1,自引:0,他引:1
BACKGROUND: The development of minimally invasive, non-viral gene delivery vehicles for the central nervous system (CNS) is an important technology goal in the advancement of molecular therapies for neurological diseases. One approach is to deliver materials peripherally that are recognized and retrogradely transported by motor neurons toward the CNS. Tet1 is a peptide identified by Boulis and coworkers to possess the binding characteristics of tetanus toxin, which interacts specifically with motor neurons and undergoes fast, retrograde delivery to cell soma. In this work, Tet1-poly(ethylenimine) (Tet1-PEI) was synthesized and evaluated as a neurontargeted delivery vehicle. METHODS: Tet1-PEI and NT-PEI (neurotensin-PEI) were synthesized and complexed with plasmid DNA to form polyplexes. Polyplexes were assessed for binding and uptake in differentiated neuron-like PC-12 cells by flow cytometry and confocal microscopy. In order to determine gene delivery efficiency, polyplexes were exposed to PC-12 cells at various stages of differentiation. Targeted binding of polyplexes with primary neurons was studied using dorsal root ganglion cells. RESULTS: Tet1-PEI and NT-PEI polyplexes bound specifically to differentiated PC-12 cells. The specificity of the interaction was confirmed by delivery to non-neuronal cells and by competition studies with free ligands. Tet1-PEI polyplexes preferentially transfected PC-12 cells undergoing NGF-induced differentiation. Finally, neuron-specific binding of Tet1-PEI polyplexes was confirmed in primary neurons. CONCLUSIONS: These studies demonstrate the potential of Tet1-PEI as a neuron-targeted material for non-invasive CNS delivery. Tet1-PEI binds specifically and is internalized by neuron-like PC-12 cells and primary dorsal root ganglion. Future work will include evaluation of siRNA delivery with these vectors. 相似文献
9.
Jun YJ Kim JH Choi SJ Lee HJ Jun MJ Sohn YS 《Bioorganic & medicinal chemistry letters》2007,17(11):2975-2978
In order to develop a new gene delivery vector, a novel cationic poly(organophosphazene) was synthesized by stepwise nucleophilic substitutions of poly(dichlorophosphazene) with a hydrophilic methoxy-poly(ethylene glycol) (MPEG) as a shielding group and a branched tetra(L-lysine), LysLys(LysEt)(2), as a cationic moiety. The cationic polymer has shown to form a polyplex by DNA condensation and very low in vitro cytotoxicity probably due to the shielding effect of MPEG, which provides a basis for improving the low gene transfection yield of cationic polyphosphazenes. 相似文献
10.
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass cells using poly(amidoamine) dendrimers. Our new scheme utilizes the physiochemical properties as well as the nanosize of the poly(amidoamine) dendrimer for direct and noninvasive gene delivery. The GFP gene was expressed in the plant cells as observed by confocal fluorescence microscopy. The transfection efficiency may be further improved by optimizing the pH of the cell culture medium and the molar ratio of the dendrimer to DNA. The use of the current delivery system can be extended to virtually all plant species having successful regeneration systems in place. 相似文献
11.
An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells. 相似文献
12.
A block copolymer of a hyperbranched poly(ethylene glycol)-like core and linear polyethylenimine (HBP) was synthesized by a facile synthetic route that included (1) a single-step cationic copolymerization of diepoxy and polyhydroxyl monomers, (2) derivatization of hydroxyl groups of the core HBPEG copolymer with either tosyl or chloromethylbenzoyl chlorides resulting in a corresponding macroinitiator, and (3) synthesis of HBPEG-block-poly(alkyl oxazolines). HBPEG-block-linear polyethyleneimine (HBP) was obtained by hydrolysis of HBPEG-block-poly(alkyl oxazolines). Linear PEI-bearing hyperbranched polycations (HBP) had lower inherent toxicity in cell culture than PEG-grafted linear polyethyleneimines (PEGLPEI). PEGLPEI formed a complex with DNA with an average diameter of 250 nm. The complexes were loosely condensed and formed aggregates and precipitates during storage. By contrast, hyperbranched polycations (HBP) formed approximately 50 nm nanocomplexes with DNA that were stable for several weeks and showed resistance to DNAse I-mediated degradation. The 'inverted' block copolymers showed several orders of magnitude higher transfection efficiency than PEGLPEI in vitro. Because of the biocompatibility and higher transfection efficiency, the 'inverted' block copolymer merits further investigation as a gene carrier. 相似文献
13.
End-functionalized poly(N-isopropylacrylamide) (PNIPA) was synthesized by living free radical polymerization and conventional free radical polymerization and was used to prepare graft copolymers with poly(ethylenimine) (PEI). The copolymers exhibited lower critical solution temperature (LCST) behavior between 30 and 32 degrees C and formed complexes with plasmid DNA. The LCST of the copolymers in the DNA complexes increased slightly to approximately 34-35 degrees C. Cytotoxicity of the copolymers was evaluated by measuring lactate dehydrogenase (LDH) release from cells. The copolymers exhibited temperature-dependent toxicity, with higher levels of LDH release observed at temperatures above the LCST. Cellular uptake and transfection activity of the DNA complexes with the PEI-g-PNIPA copolymers were lower than those of the control PEI/DNA complexes at temperature below the LCST but increased to the PEI/DNA levels at temperatures above the LCST. 相似文献
14.
Thankappan UP Madhusudana SN Desai A Jayamurugan G Rajesh YB Jayaraman N 《Bioconjugate chemistry》2011,22(2):115-119
The nonviral vector based gene delivery approach is attractive due to advantages associated with molecular-level modifications suitable for optimization of vector properties. In a new class of nonviral gene delivery systems, we herein report the potential of poly(ether imine) (PETIM) dendrimers to mediate an effective gene delivery function. PETIM dendrimer, constituted with tertiary amine branch points, n-propyl ether linkers and primary amines at their peripheries, exhibits significantly reduced toxicities, over a broad concentration range. The dendrimer complexes pDNA effectively, protects DNA from endosomal damages, and delivers to the cell nucleus. Gene transfection studies, utilizing a reporter plasmid pEGFP-C1 and upon complexation with dendrimer, showed a robust expression of the encoded protein. The study shows that PETIM dendrimers are hitherto unknown novel gene delivery vectors, combining features of poly(ethylene imine)-based polymers and dendrimers, yet are relatively nontoxic and structurally precise. 相似文献
15.
Schmieder AH Grabski LE Moore NM Dempsey LA Sakiyama-Elbert SE 《Biotechnology and bioengineering》2007,96(5):967-976
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles. 相似文献
16.
Yamagata M Kawano T Shiba K Mori T Katayama Y Niidome T 《Bioorganic & medicinal chemistry》2007,15(1):526-532
This study aimed to investigate the relationships between structures of gene carrier molecules and their activities for gene delivery into cells. We compared 2 types of poly(L-lysine) as carriers, that is, dendritic poly(L-lysine) (KG6) and linear poly(L-lysine) (PLL). KG6 formed a neutral DNA complex, and its DNA compaction level was weaker than that of PLL. The amount of DNA binding and uptake into cells mediated by PLL was 4-fold higher than that with KG6. However, KG6-mediated gene expression was 100-fold higher than that by PLL. Since pK(a) values of terminal amines of KG6 were lowered even though small amounts of DNA were internalized into cells, sufficient DNA amounts for effective gene expression escaped to the cytosol due to the proton sponge effect in the endosome. In addition, weakly compacted DNA with KG6 was advantageous in accessing RNA polymerase in the cell nucleus. On the other hand, PLL did not show the proton sponge effect in the endosome and resulted in strong compaction of DNA. Even though large DNA amounts were internalized into cells, most of the DNA would not take part in gene expression systems in the nucleus. Amount of induced cytokine production after intravenous injection of DNA complexes with KG6 and PLL was low, and was similar to the case when DNA was injected alone. Therefore, no significant difference in effects on cytokine production was observed between KG6 and PLL. 相似文献
17.
Deacylation of nitrophenyl acetates containing carboxyl substituents [4-acetoxy-3-nitrobenzoic acid (1), 3-acetoxy-4-nitrobenzoic acid (2), and 2-acetoxy-5-nitrobenzoic acid (3)] was studied in the presence of poly(ethylenimine) derivatives. The polymers examined contained lauryl groups (Lau12PEI) or both lauryl and imidazolyl groups (Lau12Im10PEI). The reaction with active ester proceeds through the attack of primary amino groups of the polymers at the acyl carbons of the substrates. The reaction of Lau12Im10PEI with a hydrophobic ester, p-nitrophenyl caproate (NPC), however, has been reported to involve the attack by the imidazolyl group of the polymer. Thus, the anionic (carboxyl-containing) and the hydrophobic esters bind to different domains on Lau12Im10PEI. Among the anionic substrates, 3 has uniquely large kcat values compared with 1 or 2. This is explained in terms of closer proximity between a nucleophile amino group of the polymer and the scissile bond of the substrate in the polymer-substrate complex. 相似文献
18.
Sonsoles Díez Itziar Miguéliz Conchita Tros de Ilarduya 《Cellular & molecular biology letters》2009,14(2):347-362
We developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium)
propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor
cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to
encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded
in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles
(AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies
compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results
of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated
endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles
carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence
of a very high concentration of serum, and this could be a potential system for in vivo application. 相似文献
19.
Lin C Zhong Z Lok MC Jiang X Hennink WE Feijen J Engbersen JF 《Bioconjugate chemistry》2007,18(1):138-145
A series of novel bioreducible poly(amido amine)s containing multiple disulfide linkages (SS-PAAs) were synthesized and evaluated as nonviral gene vectors. These linear SS-PAAs could be easily obtained by Michael-type polyaddition of various primary amines to the disulfide-containing cystamine bisacrylamide. The SS-PAA polymers are relatively stable in medium mimicking physiological conditions (pH 7.4, 150 mM PBS, 37 degrees C), but are rapidly degraded in the presence of 2.5 mM DTT, mimicking the intracellular reductive environment (pH 7.4, [R-SH] = 5 mM, 37 degrees C). The polymers efficiently condense DNA into nanoscaled (<200 nm) and positively charged (>+20 mV) polyplexes that are stable under neutral conditions but are rapidly destabilized in a reductive environment, as was revealed by both dynamic light scatting measurement and agarose gel assays. Moreover, most of the poly(amido amine)s possess buffer capacities in the pH range pH 7.4-5.1 that are even higher than polyethylenimine (pEI), a property that may favorably contribute to the endosomal escape of the polyplexes. Polyplexes of four of the seven SS-PAAs studied were able to transfect COS-7 cells in vitro with transfection efficiencies significantly higher than those of branched pEI, being one of the most effective polymeric gene carriers reported to date. Importantly, also in the presence of serum, a high level of gene expression could be observed when the incubation time was elongated from 1 h to 4 h. XTT assays showed that SS-PAAs and their polyplexes possess essentially no or only very low cytotoxicity at concentrations where the highest transfection activity is observed. The results indicate that bioreducible poly(amido amine)s have excellent properties for the development of highly potent and nontoxic polymeric gene carriers. 相似文献
20.
Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery 总被引:1,自引:0,他引:1
We report on the preparation and characterization of poly(D, L-lactide-co-glycolide) (PLGA) microparticles with surface-conjugated polyamidoamine (PAMAM) dendrimers of varying generations. The buffering capacity and zeta-potential of the PLGA PAMAM microparticles increased with increasing generation level of the PAMAM dendrimer conjugated. Conjugation of the PAMAM dendrimer to the surface of the PLGA microparticle removed generation-dependent cytotoxicity in HEK293 and COS7 cell lines. PLGA PAMAM pDNA microparticles displayed similar cytotoxicity profiles to unmodified PLGA pDNA microparticles in COS7 cells. A generation three PAMAM dendrimer conjugated to PLGA microparticles significantly increased transfection efficiencies in comparison to unmodified PLGA microparticles. 相似文献