首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infections of wound sites on dicot plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. An early step in tumor formation is bacterial attachment to the plant cells. AttR mutants failed to attach to wound sites of both legumes and nonlegumes and were avirulent on both groups of plants. AttR mutants also failed to attach to the root epidermis and root hairs of nonlegumes and had a markedly reduced ability to colonize the roots of these plants. However, AttR mutants were able to attach to the root epidermis and root hairs of alfalfa, garden bean, and pea. The mutant showed little reduction in its ability to colonize these roots. Thus, A. tumefaciens appears to possess two systems for binding to plant cells. One system is AttR dependent and is required for virulence on all of the plants tested and for colonization of the roots of all of the plants tested except legumes. Attachment to root hairs through this system can be blocked by the acetylated capsular polysaccharide. The second system is AttR independent, is not inhibited by the acetylated capsular polysaccharide, and allows the bacteria to bind to the roots of legumes.  相似文献   

2.
Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules).  相似文献   

3.
Receptor Site on Clover and Alfalfa Roots for Rhizobium   总被引:17,自引:4,他引:13       下载免费PDF全文
Sites on white clover and alfalfa roots that bind Rhizobium trifolii and R. meliloti capsular polysaccharides, respectively, were examined by fluorescence microscopy. Fluorescein isothiocyanate-labeled capsular material from R. trifolii bound specifically to root hairs of clover but not alfalfa. Binding was most intense at the root hair tips. Treatment of clover roots with 2-deoxyglucose (2-dG) prevented binding of R. trifolii capsular material to the roots. The sugar 2-dG enhanced the elution of clover root protein, which could bind to and specifically agglutinate R. trifolii but not R. meliloti or R. japonicum. The mild elution procedure left the roots intact. Agglutination of R. trifolii and passive hemagglutination of rabbit erythrocytes coated with the capsular material of R. trifolii were specifically inhibited by 2-dG. These results suggest that clover roots contain proteins that cross-link complementary polysaccharides on the surface of clover root hairs and infective R. trifolii through 2-dG-sensitive binding sites. Alfalfa root hairs were shown to specifically bind to a surface polysaccharide from R. meliloti.  相似文献   

4.
Chromosomal virulence (chv) mutants of Agrobacterium tumefaciens have been reported to be deficient in binding to cells of zinnia, tobacco, and bamboo. The mutants are nonpathogenic on stems of Kalanchoë, sunflower, tomato, Jerusalem artichoke, and tobacco, but they cause tumors on tubers of Solanum tuberosum. We used a root cap cell binding assay to test ability of cells from individual plants of 13 different plant species to bind parent or chv mutant bacteria. The same plants were then inoculated to test for disease response. Cells from nine of the plant species were grossly deficient in their abilities to bind mutant bacteria, and the plants inoculated with mutant bacteria failed to form tumors. In contrast, root cap cells as well as root hairs and root surfaces of S. tuberosum, S. okadae, and S. hougasii bound chv mutant bacteria as well as wild type. Nevertheless, S. tuberosum roots inoculated with mutant bacteria did not develop tumors. Although S. okadae plants inoculated with mutant bacteria formed a few tumors, and S. hougasii developed as many tumors in response to chv mutants as in response to the parent strain, the tumors induced by mutant bacteria were smaller.  相似文献   

5.
Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study describes the characterization of RabA2, a common bean (Phaseolus vulgaris) cDNA previously isolated as differentially expressed in root hairs infected with Rhizobium etli, which encodes a protein highly similar to small GTPases of the RabA2 subfamily. This gene is expressed in roots, particularly in root hairs, where the protein was found to be associated with vesicles that move along the cell. The role of this gene during nodulation has been studied in common bean transgenic roots using a reverse genetic approach. Examination of root morphology in RabA2 RNA interference (RNAi) plants revealed that the number and length of the root hairs were severely reduced in these plants. Upon inoculation with R. etli, nodulation was completely impaired and no induction of early nodulation genes (ENODs), such as ERN1, ENOD40, and Hap5, was detected in silenced hairy roots. Moreover, RabA2 RNAi plants failed to induce root hair deformation and to initiate ITs, indicating that morphological changes that precede bacterial infection are compromised in these plants. We propose that RabA2 acts in polar growth of root hairs and is required for reorientation of the root hair growth axis during bacterial infection.  相似文献   

6.
Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules).  相似文献   

7.
In contrast to wild-type Agrobacterium tumefaciens strains, β-1,2-glucan-deficient chvB mutants were found to be unable to attach to pea root hair tips. The mutants appeared to produce rhicadhesin, the protein that mediates the first step in attachment of Rhizobiaceae cells to plant root hairs, but the protein was inactive. Both attachment to root hairs and virulence of the ChvB mutants could be restored by treatment of the plants with active rhicadhesin, whereas treatment of plants with β-1,2-glucan had no effect on attachment or virulence. Moreover, nodulation ability of a chvB mutant carrying a Sym plasmid could be restored by pretreatment of the host plant with rhicadhesin. Apparently the attachment-minus and avirulence phenotype of chvB mutants is caused by lack of active rhicadhesin, rather than directly being caused by a deficiency in β-1,2-glucan synthesis. The results strongly suggest that rhicadhesin is essential for attachment and virulence of A. tumefaciens cells. They also indicate that the mechanisms of binding of Agrobacterium and Rhizobium bacteria to plant target cells are similar, despite differences between these target cells.  相似文献   

8.
Tumorigenic (CG49) and nontumorigenic (CG484) strains of Agrobacterium tumefaciens bv. 3 attached to grape roots at a higher level than did a nonpectinolytic mutant of CG49 (CG50) or a tumorigenic strain of A. tumefaciens bv. 1 (CG628). Strains attached equally well to wounded and unwounded grape roots. Strains responded differently to pea plants in that biovar 3 strains consistently attached to unwounded roots at a lower level than they did to wounded roots, whereas CG628 attached equally well regardless of wounding. The lowest levels of attachment to pea roots were consistently observed for CG50. Population curves were calculated for the strains inoculated into wound sites on grape and pea roots. A. tumefaciens bv. 3 wild-type strains developed greater populations at wound sites on grape roots after 100 h (resulting in root decay) than did CG50 or CG628. Population curves for strains at wound sites on pea roots were different from those on grape roots. There were no significant differences in populations after 100 h, and no strains caused root decay. No differences in the chemotaxis of wild-type and mutant A. tumefaciens bv. 3 strains towards grape roots, crown pieces, or root extracts were observed, but the biovar 1 strain, CG628, always migrated the greatest distance towards all substrates. Polygalacturonase production may affect attachment to grape roots and multiplication of A. tumefaciens bv. 3 at wound sites and thus be associated with the specificity of the bacterium for grape.  相似文献   

9.
The root epidermis is composed of two cell types: trichoblasts (or hair cells) and atrichoblasts (or non-hair cells). In lettuce (Lactuca sativa cv. Grand Rapids var. Rapidmor oscura) plants grown hydroponically in water, the root epidermis did not form root hairs. The addition of 10 µM sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in almost all rhizodermal cells differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic acid (NAA) displayed a significant increase of root hair formation (RHF) that was prevented by the specific NO scavenger carboxy-PTIO (cPTIO). In Arabidopsis, two mutants have been shown to be defective in NO production and to display altered phenotypes in which NO is implicated. Arabidopsis nos1 has a mutation in an NO synthase structural gene (NOS1), and the nia1 nia2 double mutant is null for nitrate reductase (NR) activity. We observed that both mutants were affected in their capacity of developing root hairs. Root hair elongation was significantly reduced in nos1 and nia1 nia2 mutants as well as in cPTIO-treated wild type plants. A correlation was found between endogenous NO level in roots detected by the fluorescent probe DAF-FM DA and RHF. In Arabidopsis, as well as in lettuce, cPTIO blocked the NAA-induced root hair elongation. Taken together, these results indicate that: (1) NO is a critical molecule in the process leading to RHF and (2) NO is involved in the auxin-signaling cascade leading to RHF.Key Words: auxin, nitric oxide, root hair, lettuce, arabidopsis, nos1 mutant, nia1, nia2 mutant  相似文献   

10.
We examined the ability of several Paenibacillus polymyxa strains to colonize wheat roots and the ability of P. polymyxa exoglycans to induce root hair deformation. For the first time, exopolysaccharides isolated from P. polymyxa were found to produce, with different intensities, various morphological changes in the root hairs of wheat seedlings, which are some of the earliest responses of plants to bacteria in the surrounding milieu. P. polymyxa 1465, giving the highest exopolysaccharide yield and the highest viscosity of aqueous exopolysaccharide solutions, was best able to colonize wheat seedling roots, and its exopolysaccharide proved to be the best in producing root hair deformation. It is suggested that P. polymyxa exoglycans have an active role in the establishment of plant–microbe associations.  相似文献   

11.
We have examined the response of the hormone-resistant mutants axr1 and axr2 of Arabidopsis thaliana to inoculation by Agrobacterium tumefaciens and Agrobacterium rhizogenes. Our results indicate that recessive mutations in the axr1 gene affect the frequency of tumor formation after inoculation with either Agrobacterium strain. In addition, tumors produced on axr1 plants were smaller than those growing on wild-type plants. These results indicate that the product of the AXR1 gene is important for both crown gall and hairy root tumor formation. In contrast, the dominant axr2 mutation has a more severe effect on the development of crown gall tumors than on hairy root tumors. Crown gall tumors produced on axr2 plants had a different morphology than wild-type tumors and did not grow when they were removed from the explant. In contrast, a large number of hairy root tumors were produced on wild-type and axr2 plants, and both types of tumors grew when they were removed from the explant. Like the roots of axr2 plants, roots produced on axr2 explants lacked root hairs.  相似文献   

12.
Schmidt W  Schikora A 《Plant physiology》2001,125(4):2078-2084
Low bioavailability of phosphorus (P) and iron (Fe) induces morphogenetic changes in roots that lead to a higher surface-to-volume ratio. In Arabidopsis, an enlargement in the absorptive surface area is achieved by an increase in the length and frequency of hairs in roots of Fe- and P-deficient plants. The extra root hairs are often located in positions that are occupied with non-hair cells under normal conditions, i.e. over a tangential wall of underlying cortical cells. An involvement of auxin and ethylene in root epidermis cell development of Fe- and P-deficient plants was inferred from phenotypical analysis of hormone-related Arabidopsis mutants and from the application of substances that interfere with either synthesis, transport, or perception of the hormones. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-D caused a marked increase in root hair density in plants of all growth types and confers a phenotype characteristic of ethylene-overproducing mutants. Hormone insensitivity and application of hormone antagonists inhibited the initiation of extranumerary root hairs induced by Fe deficiency, but did not counteract the formation of extra hairs in response to P deprivation. A model is presented summarizing putative pathways for alterations in root epidermal cell patterning induced by environmental stress.  相似文献   

13.
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.  相似文献   

14.
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

15.
A promoter tagging program in the legume Lotus japonicus was initiated to identify plant genes involved in the nitrogen-fixing symbiosis between legumes and rhizobia. Seven transformed plant lines expressing the promoterless reporter gene uidA (beta-glucuronidase; GUS) specifically in roots and/or nodules were identified. Four of these expressed GUS in the roots only after inoculation with nodule-forming Mesorhizobium loti. In one line (T90), GUS activity was found in the root epidermis, including root hairs. During seedling growth, GUS expression gradually became focused in developing nodules and disappeared from root tissue. No GUS activity was detected when a non-nodulating mutant of M. loti was used to inoculate the plants. The T-DNA insertion in this plant line was located 1.3 kb upstream of a putative coding sequence with strong homology to calcium-binding proteins. Four motifs were identified, which were very similar to the "EF hands" in calmodulin-related proteins, each binding one Ca2+. We have named the gene LjCbp1 (calcium-binding protein). Northern (RNA) analyses showed that this gene is expressed specifically in roots of L. japonicus. Expression was reduced in roots inoculated with non-nodulating M. loti mutants and in progeny homozygous for the T-DNA insertion, suggesting a link between the T-DNA insertion and this gene.  相似文献   

16.
A field isolate of Bradyrhizobium japonicum which failed to attach polarly or firmly to soybean roots was compared with the laboratory isolate I-110 for its relative rate of growth, piliation, attachment and nodulation. Both isolates grew at a comparable rate in yeast extract-gluconate medium as well as in soybean root exudate, produced comparable amounts of soybean lectin binding polysaccharide, infected through curled root hairs and developed effective nodules. Approximately 5% of cells in cultures of 110 possessed pili but none were detected in cultures of 1007 by electron microscopy. Light microscopic observations of root hairs from roots exposed to 1007 and 110 inoculum showed no polarly attached cells of 1007 and approximately 100 cells of 110 polarly attached per mm root hair length. Plate counting of firmly bound cells released by sonication indicated that the number of 1007 cells firmly adhering was at least 1000-fold lower than the number of 110 cells attached. The significance of polar, firm and weak attachment in the initiation of symbiotic interactions is discussed.Dedicated to the menory of Harry E. Calvert  相似文献   

17.
The root hair is a specialized cell type involved in water and nutrient uptake in plants. In legumes the root hair is also the primary site of recognition and infection by symbiotic nitrogen-fixing Rhizobium bacteria. We have studied the root hairs of Medicago truncatula, which is emerging as an increasingly important model legume for studies of symbiotic nodulation. However, only 27 genes from M. truncatula were represented in GenBank/EMBL as of October, 1997. We report here the construction of a root-hair-enriched cDNA library and single-pass sequencing of randomly selected clones. Expressed sequence tags (899 total, 603 of which have homology to known genes) were generated and made available on the Internet. We believe that the database and the associated DNA materials will provide a useful resource to the community of scientists studying the biology of roots, root tips, root hairs, and nodulation.  相似文献   

18.
Zhu H  Riely BK  Burns NJ  Ané JM 《Genetics》2006,172(4):2491-2499
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.  相似文献   

19.
Legumes are unique among higher plants in forming a symbiosis with Rhizobium. Phylogenetic studies indicate this symbiosis may have evolved as many as three times within the Fabaceae; alternatively, a predisposition for nodulation evolved early in the history of the legume lineage. We have identified a physiological trait-increased lateral root formation in response to abscisic acid (ABA)- that marks all nodulating and non-nodulating legume species in our study set with the exception of Chamaecrista fasciculata and Cercis occidentalis. In contrast, nonlegume species tested decrease lateral root formation in response to ABA. Cercis is not a descendant of any common ancestor hypothesized to have evolved Rhizobium nodulation and has an intermediate response to ABA, partway between that of nonlegumes and legumes. We suggest that acquisition of altered responsiveness of roots to ABA is coincident with the appearance of a predisposition for nodulation within the legumes, followed by a loss in Chamaecrista. In addition, we demonstrate that altered ABA responsiveness of lateral root formation characterizes roots of the actinorhizal nodulator, Casuarina glauca, but not the closely related, nonactinorhizal species, Betula papyrifera. Thus our data provide evidence for a physiological root trait associated with nodulation both in legumes and in an actinorhizal plant.  相似文献   

20.
Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 103 bacteria/cm of root length at the time of inoculation to more than 107 bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号