首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike all other primates, the digastric muscle of the orangutan lacks an anterior belly; the posterior belly, while present, inserts directly onto the mandible. To understand the functional consequences of this morphologic novelty, the EMG activity patterns of the digastric muscle and other potential mandibular depressors were studied in a gibbon and an orangutan. The results suggest a significant degree of functional differentiation between the two digastric bellies. In the gibbon, the recruitment pattern of the posterior digastric during mastication is typically biphasic. It is an important mandibular depressor, active in this role during mastication and wide opening. It also acts with the anterior suprahyoid muscles to move the hyoid prior to jaw opening during mastication. The recruitment patterns of the anterior digastric suggest that it is functionally allied to the geniohyoid and mylohyoid. For example, although it transmits the force of the posterior digastric during mandibular depression, it functions independent of the posterior digastric during swallowing. Of the muscles studied, the posterior digastric was the only muscle to exhibit major differences in recruitment pattern between the two species. The posterior digastric retains its function as a mandibular depressor in orangutans, but is never recruited biphasically, and is not active prior to opening. The unique anatomy of the digastric muscle in orangutans results in decoupling of the mechanisms for hyoid movement and mandibular depression, and during unilateral activity it potentially contributes to substantial transverse movements of the mandible. Hypotheses to explain the loss of the anterior digastric should incorporate these functional conclusions. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The fibers of the anterior belly digastric muscle of mice, fed a granulated diet for various periods, have been studied histochemically and morphometrically. The diameters of the anterior belly digastric fibers in normal mice fed only a granulated diet were smaller than those in mice fed a solid diet. Differences in the succinate dehydrogenase (SDH) activity of muscle fibers between op/op and normal mice gradually appeared in the anterior belly digastric muscle and, by the age of 90 days, under-development of muscle fibers was observed in the mild-belly region of the anterior belly digastric muscle of op/op mice fed a granulated diet. These results indicate mechanical stress in mastication plays an important role in the development of the anterior belly digastric muscle structures.  相似文献   

3.
Membrane potential at rest (MP), action potential (AP), critical level of depolarization (CLD) and latent period (LP) of different muscle fibers were studied in two bellies of digastric muscle. Even and chaotic distribution of different muscle fibers was observed in the anterior and posterior belly, respectively. It is believed that electrophysiological data correspond to the results of histological analysis of muscle fibers in digastric muscle.  相似文献   

4.
In this study we compared the immunohistochemically quantified fiber type area with the myosin heavy chain (MyHC) contents of a bundle of fibers from a human masticatory muscle. The total cross-sectional areas were determined immunohistochemically for the three major fiber types (I, IIA, and IIX) in bundles of fibers (n=42) taken from the anterior and posterior belly of the human digastric muscle (n=7). The relative MyHC contents of the same fiber bundles were determined electrophoretically (MyHC-I, -IIA, and -IIX; anterior, 32%, 35%, and 33%; posterior, 39%, 42%, and 19%) and compared with the immunohistochemical data (MyHC-I, -IIA, and -IIX; anterior, 32%, 31%, and 37%; posterior, 39%, 45%, and 15%). No significant differences were seen in the mean fiber type distribution between the two techniques; the correlation coefficient ranged from 0.71 to 0.96. The correlation coefficient was higher for MyHC type I and MyHC type IIX than for MyHC type IIA. The MyHC contents of single fibers taken from the posterior belly indicated that many fibers in this belly co-express MyHC-IIA and MyHC-IIX. Despite the presence of these hybrid fibers, the correspondence between both methods was relatively large.  相似文献   

5.
Frontal plane mandibular movements during mastication and the associated electromyographic (EMG) activity for left and right superficial masseter, posterior temporalis, anterior temporalis, and anterior belly of the digastric (ABD) were studied for two adult male Macaca mulatta by the new technique of “contour” analysis. Contour analysis allowed graphic and quantitative portrayal of multiple chew cycle patterns of mandibular movement and EMG activity during active mastication. A series of computer programs (ATS, ATSED, ATSXYZ) facilitated the collection, editing and definition, and finally processing of these masticatory data into contour plots. These preliminary data indicated the essential symmetry of mandibular movement patterns, high chew cycle variability inferior to occlusion, multiple centers of intense EMG activity for balancing-side superficial masseter, and no difference between working-side anterior and posterior temporalis EMG patterns. Maximum EMG amplitude was found in the area of buccal phase power stroke (BPS). Maximum EMG amplitude for ABD was located medial and inferior to occlusion; all other muscle maximum amplitudes were buccal and inferior to occlusion. The location of maximum EMG amplitudes for superficial masseter and ABD were closer to occlusion (more superior) during mastication of carrot than were maximum amplitudes during biscuit mastication. The absence of any detectable shift of EMG maximum amplitude location between biscuit and carrot for posterior and anterior temporalis suggested, along with the continuous EMG activity of working-side posterior temporalis, a secondary role for the temporalis (compensation for superficial masseter activity) during active mastication.  相似文献   

6.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

7.
H Michna 《Acta anatomica》1989,134(3):263-264
In the submandibular region an anatomical anomaly of muscle arrangement was found. Between the left and right digastric muscles, asymmetric accessory digastric muscles were detected, which all arose from the mandible and were attached to the hyoid bone. Furthermore, the right anterior digastric muscle had an accessory belly. These anomalies of digastric muscles may be anatomical manifestations of a functional support of the mylohyoid muscle.  相似文献   

8.
An experiment was undertaken to measure directly the changing length of a jaw muscle during feeding in four intact, unanesthetized New Zealand White rabbits. Metal markers were implanted to define the anterior and posterior ends of the single belly of the digastric muscle and fluroscopic images were recorded on videotape while the animals fed on pelleted chow and carrot. Graphs of muscle length versus incisor separation were obtained by making measurements of single frames of the videotape record. The graphs revealed that when pelleted chow was being chewed the length of the diagastric muscle changed by no more than 9% of its greatest length; during the latter part of the closing stroke it changed very little. Incising and chewing carrot caused the digastric muscle to change in length continuously throughout the chewing cycle; incising carrot resulted in a 13% change in the length of the digastric muscle. The velocity of shortening is slightly less than one muscle length per second.  相似文献   

9.
Young adult albino rats of Wistar strain were used for the present study. 0.5 to 15 microliters of 20-50% of horseradish peroxidase (HRP) were injected into each individual muscle of mastication to label neurons in the trigeminal motor nucleus (TMON) for light microscopic study. The results reveal that: (1) Many HRP-labeled, multipolar neurons are observed in the motor nucleus in each jaw-closing muscle (JCM) with less in each the jaw-opening muscle (JOM). (2) The motor neurons innervating each masticatory muscle in the motor nucleus show a somatotopic arrangement: (a) those innervating the temporalis muscle are located in the medial and dorsomedial parts; (b) those innervating the masseter muscle are located in the intermediate and lateral; (c) those innervating the medial and lateral pterygoid muscles are located in the lateral, ventrolateral and ventromedial parts, respectively; and (d) those innervating the mylohyoid and the anterior belly of the digastric muscles are located in the most ventromedial part of the caudal one-third of the nucleus. Axons of most masticatory motor neurons run ventrolaterally in between the motor and the chief sensory nuclei of the trigeminal nerve. However, those of the mylohyoid and anterior belly of the digastric muscles ascend dorsally to the dorsal aspect of the caudal nucleus and then turn ventrolaterally to join the motor root of the trigeminal nerve. Furthermore, the dendrites of the motor neuron of JCM converge dorsocaudally to the supratrigeminal region. The diameters of neurons of each JCM display a bimodal distribution. However, an unimodal distribution is present in the motor neurons from each JCM. It is suggested that the motor nucleus innervating the JCM is comprised of comprised of alpha- and gamma-motor neurons. It, thus, may provide a neural basis for the regulation of the muscle tone and biting force.  相似文献   

10.
This paper aims to document accurately the soft tissue anatomy and bony attachments of the posterior belly of the digastric muscle and other closely related muscles in the mastoid region of extant hominoids and fossil hominids. Five wet specimens including individuals of Pan, Gorilla and Pongo were dissected and described. Eight casts of fossil hominid cranial bases were also studied along with measurements and notes made from the same original fossil hominid specimens to assess their soft tissue markings in the light of the findings for the three great apes. The results indicate that whereas the attachment of the posterior belly of the digastric muscle in Homo sapiens is associated with a deep groove or fossa, it originates from a widened area and leaves no bony markings on the cranial base of the three great apes. Following a change in the position of the foramen magnum and the occipital condyles in hominids and H. sapiens the insertion of the posterior belly of the digastric has remained posteriorly positioned but has become compressed into a deep groove. It is likely that this has come about by the displacement of the more medial soft tissue structures which have been moved laterally away from the occipital condyles.  相似文献   

11.
The pectoralis muscle (M. pectoralis) of many premier soaring birds contains a smaller, accessory, deep belly in addition to the much larger superficial belly found in all flying birds. Here we describe the muscle fiber types in both the superficial and deep bellies of the pectoralis of one such adept soaring species, the white pelican (Pelecanus erythrorhynchos).Histochemical techniques are used to demonstrate both nicotinamide adenine dinucleotide (reduced) and myofibrillar adenosine triphosphatase activities within the muscle fibers. Immunocytochemical methods employing several monoclonal antibodies, each directed against a different myosin heavy chain epitope of the chicken, are also used to characterize the fibers. While the superficial belly of the muscle consists entirely of fast-twitch oxidative-glycolytic fibers, the deep belly is composed exclusively of slow fibers. These slow fibers are labelled by two different antibodies specific for chicken slow myosin. We suggest that the fibers of the superficial belly are best suited to flapping flight, and that the fibers of the deep belly would be recruited only during soaring flight. Furthermore, we hypothesize that the deep belly found in the pectoralis of soaring species probably evolved from a deep neuromuscular compartment of the superficial belly.  相似文献   

12.
Starting from the carotid trigone, a surgical approach to the parapharyngeal part of the internal carotid artery is described. The retrostyloidal part of the lateropharyngeal space is opened up from laterocaudal after resecting the posterior belly of the digastric muscle and the styloidal muscles. Vulneration of the cranial nerves (VII, IX, X) has to be prevented.  相似文献   

13.
The neurons innervating the muscles of mastication were labeled retrogradely with horseradish peroxidase (HRP) which was injected into each muscle of mastication of the rats. The TMB-HRP labeled neurons were for light microscopic and DAB-HRP labeled neurons for electron microscopic study. Many HRP-labeled mesencephalic neurons were observed in the trigeminal mesencephalic nucleus (TMEN) after HRP injection in jaw-closing muscles (JCM). On the other hand, no labeled neurons were found following the application of HRP to the lateral pterygoid and the anterior belly of the digastric muscles, with the exception of a very few from the mylohyoid muscle. The latter three muscles were jaw-opening muscles (JOM). The mesencephalic neurons of each JCM in the TMEN were rather randomly distributed, although they were concentrated more in the caudal region of this nucleus. These neurons were typically unipolar, with spherical to oval perikarya. Each neuron had a single process which coursed caudolaterally to join the mesencephalic tract of the trigeminal nerve. Ultrastructurally, mesencephalic masticatory neurons had a rather regular nucleus locating either centrally or eccentrically in the perikaryon, which is rather plump. The cytoplasm was endowed with very well developed Golgi apparatus and rough endoplasmic reticulum. Neurofilaments, varying in number, intermingled mostly with the Golgi apparatus in the cytoplasm. Somatic spines were frequently observed; however, synapses abutting upon the soma were few. Macula adherens-like structures were occassionally encountered in the contact zone between two cells.  相似文献   

14.
The active length-tension relation was determined for the left digastric muscle of seven New Zealand White rabbits anesthetized with pentobarbital. Measurements of muscle length and fiber architecture were made from photographs of resting and actively contracting muscle. There was a marked difference between length-tension curves based upon resting as compared to active muscle length. The active length-tension relation had a longer descending limb than ascending limb, whereas the length-tension relation based on passive muscle length tended to be symmetrical around optimum length. On the average, muscle fibers lengthened 0.77 mm for each 1 mm of extension of the muscle belly. Since the rabbit digastric muscle is unipinnate, this suggests that pinnation serves to enhance the range of muscle excursion in this muscle.  相似文献   

15.
The participation of the superior belly of the omohyoid muscle and anterior belly of the digastric muscle in tongue and head movements was studied eletromyographically in 20 normal young volunteers. A pair of monopolar electrodes was used in each muscle for simultaneous recording of their actions. The muscles act in the following tongue movements: protrusion, right and left lateral movements, placement of the tip of the tongue on soft and hard palates and on the floor of the mouth. The strongest levels of activity of the superior belly of the omohyoid muscle were observed in the placement of the tip of the tongue on the soft palate, coincidentally with a greater dislocation of hyoid bone. Both of the muscles studied did not participate in the head's kinesiology.  相似文献   

16.
Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exerted (ratio approximately 118%) after distal than after equal proximal lengthening. For proximal force, the reverse occurred (ratio approximately 157%). Passive EDL force exerted at the lengthened end was 7-10 times the force exerted at the nonlengthened end. While kept at constant length, synergists (tibialis anterior + extensor hallucis longus: active muscle force difference approximately -10%) significantly decreased in force by distal EDL lengthening, but not by proximal EDL lengthening. We conclude that force exerted at the tendon at the lengthened end of a muscle is higher because of the extra load imposed by myofascial force transmission on parts of the muscle belly. This is mediated by changes of the relative position of most parts of the lengthened muscle with respect to neighboring muscles and to compartment connective tissues. As a consequence, muscle relative position is a major codeterminant of muscle force for muscle with connectivity of its belly close to in vivo conditions.  相似文献   

17.
18.
Optoelectronic analysis of mandibular movement and electromyography (EMG) of masticatory muscles in Cavia porcellus indicate bilateral, unilateral, and gnawing cycles. During bilateral and unilateral cycles, the mandibular tip moves forward, lateral, and down during the lingual phase of the power stroke to bring the teeth into occlusion. EMG activity is generally asymmetric, with the exception of activity of the temporalis muscle during bilateral cycles. During gnawing cycles, the mandible moves in an anteroposterior direction that is opposite that during bilateral and unilateral chew cycles. Bilateral and unilateral cycles of pellets were significantly longer than carrot. With the exception of the width of bilateral cycles, the magnitude of cycle width, length, and height during the mastication of carrots was greater than that during the mastication of pellets. Significant differences exist between EMG durations during mastication of pellets and carrots. The lateral pterygoid displays continuous activity during gnawing cycles. Significant differences also exist in the durations of EMG activity between the working and balancing side during all three cycle types. High level activity of balancing side temporalis and anterior belly of digastric (ABD) during bilateral cycles occurs during rotation and depression of the mandible during the power stroke. The temporalis apparently provides a ?braking”? or compensatory role during closing and power strokes. Differences between Cavia masticatory patterns and those shown by Rattus and Mesocricetus are apparently due to differences in dental morphology, occlusal relationships, and, possibly, the poorly developed temporalis in Cavia. The large number and wide diversity of rodent groups afford students of mammalian mastication an opportunity to investigate and compare different masticatory specializations.  相似文献   

19.
The sternohyoid (SH) and geniohyoid (GH) are antagonist strap muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the SH exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the SH and GH muscles during an unrestrained, and vigorous head shaking behavior in an animal model of human head, neck, and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several revolutions. Using sonomicrometry and intramuscular EMG, we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly, and posterior) of each muscle. Changes in muscle length, however, were more complex. In the SH, mid-belly length-change occurred out-of-phase with the anterior and posterior end regions, but with a zero lag timing; the anterior region shortened before the posterior. In the GH, the anterior region shortened before and out-of-phase with the mid-belly and posterior regions. Head shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these anatomically simple hyoid strap muscles have more complex function than textbooks often suggest.  相似文献   

20.
The authors hypothesized that distraction at a rate of 3 mm/day, compared with mandibular distraction at a rate of 1 mm/day, would produce a maladaptive response in adjacent muscles of mastication. The authors further hypothesized that the maladaptive response would manifest at the single fiber level by means of increased sarcomeric heterogeneity, decreased maximum force output, and increased susceptibility to stretch-induced injury. In an ovine model, distraction osteogenesis of the right hemimandible was performed at either 1 mm/day for 21 days (n = 2) or 3 mm/day for 7 days (n = 2) to achieve a total distraction distance of 21 mm. The left hemimandibles served as controls. After a consolidation period of 2 days, the anterior digastric muscles were harvested; in six randomly selected single fibers from each muscle, maximum calcium-activated force (Po) was measured at optimal sarcomere length. The amount of damage to the sarcomeres in each fiber was assessed microscopically. To test susceptibility to contraction-induced injury, each fiber was given an activated stretch of 20 percent. Compared with control fibers and fibers distracted at 1 mm/day, maximum tetanic force (Po) was significantly lower in fibers distracted at 3 mm/day. Compared with control fibers, specific Po (Po/cross-sectional area) was lower in fibers distracted at 3 mm/day. The number of sarcomeres appearing damaged in fibers distracted at 3 mm/day was significantly higher than in control fibers or in fibers distracted at 1 mm/day. A greater deficit in Po was observed after a single activated stretch in fibers distracted at 3 mm/day than in control fibers or in fibers distracted at 1 mm/day. The authors conclude that distraction of the anterior digastric muscle in sheep at 3 mm/day produces a maladaptive response in the muscle fibers but a rate of 1 mm/day is tolerated by the muscle fibers. These data are consistent with the hypothesis that distraction of skeletal muscle at high rates results in increased heterogeneity of sarcomere lengths and that this increase in heterogeneity is the most likely potential mechanism resulting in whole muscle force deficits and in increased susceptibility to stretch-induced injury in distracted muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号