首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu JH  Wang XW  Ng S  Quek CH  Ho HT  Lao XJ  Yu H 《Journal of biotechnology》2005,117(4):355-365
A new class of microcapsules was prepared under physiological conditions by polyelectrolyte complexation between two oppositely-charged, water-soluble polymers. The microcapsules consisted of an inner core of half N-acetylated chitosan and an outer shell of methacrylic acid (MAA) (20.4%)-hydroxyethyl methacrylate (HEMA) (27.4%)-methyl methacrylate (MMA) (52.2%) (MAA-HEMA-MMA) terpolymer. Both 400 and 150 kDa half N-acetylated chitosans maintained good water solubility and supplied enough protonated amino groups to coacervate with terpolymer at pH 7.0-7.4, in contrast to other chitosan-based microcapsules which must be prepared at pH <6.5. The viscosity of half N-acetylated chitosan solutions between 80 and 3000 cPas allowed the formation of microcapsules with spherical shape. Molar mass, pH and concentration of half N-acetylated chitosan, and reaction time, influenced the morphology, thickness and porosity of the microcapsules. Microcapsules formed with high concentration of half N-acetylated chitosan exhibited improved mechanical stability, whereas microcapsules formed with low concentration of half N-acetylated chitosan exhibited good permeability. This 3D microenvironment has been configured to cultivate sensitive anchorage-dependent cells such as hepatocytes to maintain high level of functions.  相似文献   

2.
The objective of this work is to improve the solubility of chitosan at neutral or basic pH using the supercritical carbon dioxide (sc.CO2). A novel water-soluble chitosan–l-glutamic acid (Cl-GA) aerogel derivative was synthesized by reaction of 85% deacetylated chitosan with l-glutamic acid (l-GA) in aq.AcOH subjected to solvent exchange prior to using sc.CO2 as a nonsolvent for the polymer. The prepared aerogel derivative and molecular conformation of modified chitosan are characterized by using UV, FTIR, 1H NMR, and CD techniques. Some physical properties and surface morphology were analyzed by X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and porosimetry analysis. Overall, the sc.CO2 assisted chitosan aerogel derivative opens new perspectives in biomedical applications.  相似文献   

3.
The extended use of chitosan in biomedical fields has been limited by its insoluble nature in a biological solution. To endow the water solubility in a broad range of pH, chitosan derivatives were prepared by the covalent attachment of a hydrophilic sugar moiety, gluconic acid, through the formation of an amide bond. These sugar-bearing chitosans (SBCs) were further modified by the N-acetylation in an alcoholic aqueous solution. Thereafter, the effect of the gluconyl group and the degree of N-acetylation (DA) on the water solubility at different pHs and on the biodegradability of chitosan were investigated. The SBCs showed the water solubility in a broader range of pH than chitosan, whereas they were still insoluble at neutral and alkali pH. The N-acetylation of SBCs significantly affected the water solubility, for example, the SBCs with the DA, ranging from 29% to 63%, were soluble in the whole range of pH. This might result from the improved hydrophilicity by the gluconyl group, accompanied by the role of the N-acetyl group that disturbed the hydrogen bonding between amino groups of chitosan. From the biodegradation tests, determined by the decrease in the viscosity of a polymer solution exposed to lysozyme, it was evident that the gluconyl group attached to chitosan improved the biodegradability. Thus, it was possible to control the biodegradability of chitosan by adjusting the amounts of gluconyl and N-acetyl groups in the chitosan backbone. The N-acetylated SBCs, soluble in the broad range of pH, might be useful for various biomedical applications.  相似文献   

4.
The stability of the solutions of partially N-acetylated chitosans was studied by two methods: (1) 1% solutions of the chitosan derivatives in 0.1 M aqueous acetic acid were added dropwise to buffer solutions with pH from 8.6 to 12 and to a 0.1 M NaOH solution; (2) to each 0.5% solution of the derivatives in 0.1 M acetic acid was added the desired amount of a 1 M NaOH solution. The stability data obtained were summarized with respect to the degree of N-acetylation. It was found that the solutions of the derivatives with more than 50% acetyl content were stable even in alkaline conditions and the gelation and precipitation of the solutions did not occur. The reactivity of the derivatives with the degree of N-acetylation of more than 50% was studied using methyl 4-azidobenzoimidate (MABI) and ethylene glycol diglycidyl ether in homogeneous states. It was found that MABI reacted with amino groups of the chitosans only at neutral pH and glycidyl groups reacted at neutral and alkaline pH. It seems that these unique properties of chitosans with a degree of N-acetylation of more than 50% will enable us to prepare new chitosan derivatives.  相似文献   

5.
Aminoethyl modified chitosan derivatives (AEMCSs) with different molecular weight (Mw) were synthesized by grafting aminoethyl group on different molecular weight chitosans and chitooligosaccharide. FTIR, (1)H NMR, (13)C NMR, elemental analysis and potentiometric titration results showed that branched polyethylimine chitosan was synthesized. Clinical Laboratory Standard Institute (CLSI) protocols were used to determine MIC for Gram-negative strain of Escherichia coli under different pH. The antibacterial activity of the derivatives was significantly improved compared with original chitosans, with MIC values against E. coli varying from 4 to 64 μg/mL depending on different Mw and pH. High molecular weight seems to be in favor of stronger antibacterial activity. At pH 7.4, derivatives with Mw above 27 kDa exhibited equivalent antibacterial activity (16 μg/mL), while oligosaccharide chitosan derivative with lower Mw (~1.4 kDa) showed decreased MIC of 64 μg/mL. The effect of pH on antibacterial activity is more complicated. An optimal pH for HAEMCS was found around 6.5 to give MIC as low as 4 μg/mL, while higher or lower pH compromised the activity. Cell integrity assay and SEM images showed evident cell disruption, indicating membrane disruption may be one possible mechanism for antibacterial activity.  相似文献   

6.
A series of four water-soluble chitosan derivatives differing in molecular mass, hydrophobicity, and charge was synthesized and tested for the intensity of their effects on Gram-negative and Gram-positive bacteria. It was shown that the tested compounds allowed the penetration of ethidium bromide into the bacteria, which showed increased permeability of their cell walls under the effect of chitosans. The tolerance to various chitosan derivatives differed in Gram-negative and Gram-positive bacteria. The Gram-negative bacteria were the most responsive to high-molecular chitosan and the Gram-positive ones, to N-,O-carboxypropylchitosan, whereas high-molecular chitosan had little effect. Research on the correlation between the structure and activity of the studied compounds revealed that depolymerization of chitosan reduced, and introduction of hydrophobic substantives in chitosan molecule significantly enhanced its permeability effect on bacterial cell walls. The obtained results provide a basis for the construction of new chitosan derivatives with antimicrobial activities.  相似文献   

7.
Bajaj G  Van Alstine WG  Yeo Y 《PloS one》2012,7(1):e30899
Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or primary amine contents with respect to the intraperitoneal (IP) biocompatibility and the propensity to induce pro-inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after IP administration and had no pro-inflammatory effect on naïve macrophages. Comparison with other chitosans indicates that these properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly, ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide (LPS). This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS, and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional biomaterial.  相似文献   

8.
Work to date shows that structurally distinct chitosans have reacted inefficiently and unpredictably with fluorescein isothiocyanate (FITC) in an acid–methanol solvent that maintains both chitosan and fluorophore solubility. Since isothiocyanate preferentially reacts with neutral amine groups, and chitosan solubility typically depends upon a minimal degree of protonation, we tested the hypothesis that precise derivatization of chitosan with rhodamine isothiocyanate (RITC) can be achieved by controlling the reaction time and the degree of protonation. Addition of 50% v/v methanol reduced the chitosan degree of protonation in acetic acid but not HCl solutions. At various degrees of protonation, chitosan reacted inefficiently with RITC as previously observed with FITC. Nevertheless, precise derivatization was achieved by allowing the reaction to proceed overnight at a given degree of protonation (p < 0.0001, n = 18) and fixed initial fluorophore concentration. A reproducible 2% to 4% fraction of neutral amines reacted with RITC in proportion to the initial fluorophore concentration (p < 0.005). Using our optimized protocol, chitosans with different degree of deacetylation and molecular weight were derivatized to either 1% or 0.5% mol/mol RITC/chitosan-monomer with a precision of 0.1% mol/mol. The average molecular weight of fluorescent RITC-chitosan was similar to the unlabeled parent chitosan. Precise molar derivatization of structurally distinct chitosans with RITC can be achieved by controlling chitosan degree of protonation, initial fluorophore concentration, and reaction time.  相似文献   

9.
Xing R  Liu S  Guo Z  Yu H  Wang P  Li C  Li Z  Li P 《Bioorganic & medicinal chemistry》2005,13(5):1573-1577
The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O(2)(.-))/hydroxyl ((-.)OH) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: firstly, low molecular weight chitosan had stronger scavenging effect on O(2)(.-) and (-.)OH than high molecular weight chitosan. For example the O(2)(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86% and 35.50% at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on O(2)(.-). At 0.05 mg/mL, the scavenging activity on O(2)(.-) reached 86.26% for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86% at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on O(2)(.-) and (-.)OH than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS>CTS4>HCTS>CTS3>CTS2>CTS1>CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1.  相似文献   

10.
A novel water-soluble chitosan derivative, glucosyloxyethyl acrylated chitosan was successfully synthesized by Michael addition reaction of chitosan with glucosyloxyethyl acrylate (GEA), and the obtained glyco-chitosan derivative was characterized by FT-IR, (1)H NMR, elemental analysis, XRD, TG, DSC and SEM. The FT-IR and (1)H NMR results showed that GEA residues were grafted onto the amino group of chitosan. The degree of substitution (DS) was calculated by elemental analysis. XRD data revealed that the introduced saccharide moieties decreased the crystalline structure of chitosan. TG and DSC results demonstrated that the glucosyloxyethyl acrylated chitosan was less thermal stable than chitosan. This efficient synthetic method provided an approach of preparing water-soluble glyco-chitosan derivatives. The obtained derivatives would show stronger specific affinity of lectin than chitosan thus would have potential applications in biomaterials.  相似文献   

11.
Chitosan is functionalized with poly(ethylene glycol) methyl ether (mPEG) at the amino and hydroxyl groups via a single step reaction in a homogeneous aqueous system. A chitosan aqueous solution obtained from the mixture of chitosan and hydroxybenzotriazole (HOBt) in water is a key factor in providing mild conditions to conjugate mPEG by using a carbodiimide conjugating agent. The reaction at ambient temperature for 24 h gives chitosan-g-mPEG with water solubility with mPEG content as high as 42%. This work demonstrates that a water-soluble chitosan-HOBt complex is an effective system for the preparation of chitosan derivatives via the aqueous system without the use of acids or organic solvents.  相似文献   

12.
N-(2-Carboxyethyl)chitosans were obtained by reaction of low molecular weight chitosan with a low degree of acetylation and 3-halopropionic acids under mild alkaline media (pH 8-9, NaHCO3) at 60 degrees C. The chemical structure of the derivatives obtained was determined by 1H and 13C NMR spectroscopies. It was found that alkylation of chitosan by 3-halopropionic acids proceeds exclusively at the amino groups. The products obtained are described in terms of their degrees of carboxyethylation and ratio of mono-, di-substitution and free amine content. The protonation constants of amino and carboxylate groups of a series of N-(2-carboxyethyl)chitosans were determined by pH-titration at ionic strength 0.1 M KNO3 and 25 degrees C.  相似文献   

13.
Water-soluble chitosan was processed using ultrasonication, microfluidisation and homogenisation to modify its physicochemical properties. The effect of using sonicated chitosan on formation of chitosan-glucose conjugates was investigated. Untreated and sonicated chitosan conjugates were prepared under varying reaction conditions (such as ratios of reactants, pH and temperature). The conjugates formed were evaluated for colour development and antioxidant activity. For both untreated and sonicated chitosans, the reactivity was found to be higher at pH 6.0/121 °C than at pH 4.9/121 °C. The reactivity was found to be lower at 105 °C at both pH conditions than at 121 °C. This clearly demonstrated the greater reactivity at higher temperature irrespective of the reaction pH. Antioxidant activity studies indicated that the conjugates formed at 121 °C had higher activity. Although sonication of water-soluble chitosan led to slightly enhanced viscosity indicating higher reactivity, it did not improve the antioxidant activity.  相似文献   

14.
Chitosan-based polymeric surfactants (CBPSs) were prepared by N-acylation of chitosans (chitosan 10 and 500) with several acid anhydrides such as hexanoic (C6), lauric (C12), and palmitic (C16) anhydrides. Among the CBPS samples, CBPSs having a good solubility at pH 4.0 were selected and observed for viscosity, surface tension, and adsorption of heavy metals (Cd2+, Co2+, Cr2O7(2-), and Pb2+) as well as the fatty acid (n-octanoic acid). The 1H NMR spectrum of chitosan 10 modified with C16 at the substitution ratio of 0.4 (CBPS10-C16,0.4) showed 85% of acylation in 1% DCl/D2O solutions. CBPS10 with the substitution ratio less than 0.4 showed a good solubility because of shorter repeating units and lesser amounts of hydrophobic substituents. The intrinsic viscosity of CBPS10 was slightly increased, while that of CBPS500 was decreased. As the substitution ratio and length of the carbon chain increased, the surface tension of CBPS10 tended to decrease. CBPS10-C16,0.2 had high adsorption ability for cationic metal ions such as Cd2+, Co2+, and Pb2+ comparable to chitosan. Interestingly, CBPS(10)-C(16,0.2) showed a unique pH optimum for the anionic metal ion such as Cr2O7(2-). In addition, CBPS10-C16,0.2 exhibited the highest adsorption ability for n-octanoic acid among the tested CBPS10 with different carbon chains.  相似文献   

15.
The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives — high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) — entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS.  相似文献   

16.
The in vitro antibacterial activity and mechanism of action of two kinds of acid-soluble chitosan and one water-soluble chitosan against apricot fruit rot pathogen Burkholderia seminalis was examined in this study. Results showed that water-soluble chitosan displayed limited antibacterial activity at four tested concentrations. However, two kinds of acid-soluble chitosan solution at 2.0 mg/mL had strong antibacterial activity against B. seminalis although weak antibacterial activity was observed at a concentration lower than 1 mg/mL. The antibacterial activity of acid-soluble chitosan may be due to membrane disruption, cell lysis, abnormal osmotic pressure, and additional chitosan coating around the bacteria based on integrity of cell membranes test, out membrane permeability assays and transmission electron microscopy observation. In addition, biofilm biomass were markedly reduced after treating with two kinds of acid-soluble chitosan at concentrations of 2.0 and 1.0 mg/mL for 3 and 12 h, indicating the importance of biofilm formation in the antibacterial mechanism of chitosan. Overall, the results clearly indicated that two kinds of acid-soluble chitosan had a potential to control the contamination of apricot fruits caused by B. seminalis.  相似文献   

17.
将高度脱乙酰化的壳聚糖在均相介质中进行N-乙酰化反应,制备水溶性壳聚糖。研究了制备工艺条件对脱乙酰度及水溶性的影响。结果表明,在乙酸—乙醇均相体系中进行乙酰化反应时,壳聚糖与乙酸酐的质量比为1∶0.6,反应温度控制在20℃,反应时间为8 h时,产品的脱乙酰度在50%左右,获得了水溶性良好的N-乙酰化壳聚糖。  相似文献   

18.
Chitosan functional properties   总被引:7,自引:0,他引:7  
Chitosan is a partially deacetylated polymer of N-acetyl glucosamine. It is essentially a natural, water-soluble, derivative of cellulose with unique properties. Chitosan is usually prepared from chitin (2 acetamido-2-deoxy β-1,4-D-glucan) and chitin has been found in a wide range of natural sources (crustaceans, fungi, insects, annelids, molluscs, coelenterata etc.) However chitosan is only manufactured from crustaceans (crab and crayfish) primarily because a large amount of the crustacean exoskeleton is available as a by product of food processing. Squid pens (a waste byproduct of New Zealand squid processing) are a novel, renewable source of chitin and chitosan. Squid pens are currently regarded as waste and so the raw material is relatively cheap. This study was intended to assess the functional properties of squid pen chitosan. Chitosan was extracted from squid pens and assessed for composition, rheology, flocculation, film formation and antimicrobial properties. Crustacean chitosans were also assessed for comparison. Squid chitosan was colourless, had a low ash content and had significantly improved thickening and suspending properties. The flocculation capacity of squid chitosan was low in comparison with the crustacean sourced chitosans. However it should be possible to increase the flocculation capacity of squid pen chitosan by decreasing the degree of acetylation. Films made with squid chitosan were more elastic than crustacean chitosan with improved functional properties. This high quality chitosan could prove particularly suitable for medical/analytical applications. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
To assess the adaptability of chitosan (from agricultural waste) as a natural disinfectant, its antibacterial activity against bacteria associated with waterborne diseases was investigated by varying such abiotic conditions, as pH and ionic strength and by adding different amounts of acid solvent, metal ions, and EDTA. Two major waterborne pathogens, Escherichia coli and Staphylococcus aureus, were examined. Results showed that organic acids with low carbon number were better solvents for chitosan than were inorganic acids. The effect of pH below 6 on the antibacterial activity of chitosan was significant. The antibacterial activity of chitosan increased with ionic strength but decreased with the addition of metal ions. The addition of Zn(2+) ions inhibited the antibacterial activity of chitosan the most, while the addition of Mg(2+) ions inhibited the antibacterial activity of chitosan the least. This was due to the chelating capacity of chitosan toward metal ions. The antibacterial activity of chitosan against E. coli was enhanced by EDTA. However, the antibacterial activity of chitosan against S. aureus was partially suppressed by EDTA. The antibacterial activity of chitosan was also dependent on its charges and solubility. The antibacterial mechanism of chitosan has currently been hypothesized as being related to surface interference. The results show that the chitosan is a potential bactericide under various environmental conditions.  相似文献   

20.
Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号