首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When purified with hydroxylapatite, bovine spleen purple acid phosphatase, bearing two iron atoms/molecule, is EPR-silent. In contrast, enzyme purified without hydroxylapatite exhibits the distinctive g' = 1.74 EPR signal characteristic of porcine uteroferrin, with an intensity accounting for about 10% of the total iron. The intensity of the signal is increased 8-fold by the addition of ferrous iron. This treatment, while shifting the visible absorption maximum of the protein from 550 to 525 nm, does not significantly alter the intensity of its visible absorption. Loss of the g' = 1.74 EPR signal upon addition of phosphate to EPR-active preparations and the detection of virtually stoichiometric amounts of phosphate in the protein as isolated suggest that phosphate-binding may abolish the g' = 1.75 EPR signal. Such binding may bring the two iron atoms of the enzyme into juxtaposition, causing loss of EPR signal intensity either through spin-lattice relaxation broadening or antiferromagnetic exchange coupling, perhaps involving phosphate or other ligands intercalated between the two paramagnetic iron atoms.  相似文献   

2.
The effect of phosphate on the binuclear iron center of pink (reduced) uteroferrin was examined by magnetic resonance and optical spectroscopy. The purple (oxidized) protein, which contains 1 mol of tightly bound phosphate per mol of enzyme at isolation, does not give rise to a 31P NMR signal. Phosphate binding to phosphate-stripped pink uteroferrin is indistinguishable from that in the native purple phosphoprotein. As measured by EPR and optical spectroscopy, the rate of reaction between phosphate and pink uteroferrin is pH-dependent, decreasing as the pH increases. Phosphate is capable of binding to the reduced protein between pH 3 and 7.8, resulting in formation of the purple uteroferrin-phosphate complex. Evans susceptibility measurements at pH 4.9 indicate that the EPR silent species with a maximum absorption at 535 nm, generated upon phosphate addition to pink uteroferrin, is diamagnetic. Moreover, phosphate causes disappearance of the hyperfine-shifted resonances in the 1H NMR spectra of the reduced protein. We therefore have not been able to identify the paramagnetic "purple reduced enzyme-phosphate complex" reported by Pyrz et al. (Pyrz, J. W., Sage, J. T., Debrunner, P. G., and Que, Jr., L. (1986) J. Biol Chem. 261, 11015-11020) using Mossbauer spectroscopy and dithionite-reduced 57Fe-reconstituted uteroferrin. Our present data with native unmodified enzyme are in accord with our earlier results (Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756) and with the results of Burman et al. (Burman, S., Davis, J. C., Weber, M. J., and Averill, B. A. (1986) Biochem. Biophys. Res. Commun. 136, 490-497) on bovine spleen phosphatase, suggesting that phosphate binding to reduced protein rapidly induces oxidation of the binuclear iron center.  相似文献   

3.
Pink (reduced) uteroferrin exhibits well resolved paramagnetic NMR spectra with resonances ranging from 90 ppm downfield to 70 ppm upfield. The intensities of these signals depend on the degree of reduction and correlate well with the intensity of the EPR signals with gave = 1.74. Analyses of chemical shifts and the temperature dependence of the paramagnetically shifted resonances indicate that the Fe(III)-Fe(II) cluster in the reduced protein exhibits weak antiferromagnetic exchange coupling (-J approximately equal to 10 cm-1), in agreement with the estimate derived from the temperature dependence of the EPR signal intensity. Purple (oxidized) uteroferrin, on the other hand, exhibits no discernible paramagnetically shifted resonances, reflecting either strong antiferromagnetic coupling or an unfavorable electron spin-lattice relaxation time. Evans susceptibility comparisons between pink and purple uteroferrin show that the Fe(III)-Fe(III) cluster in the oxidized protein is more strongly coupled (-J greater than 40 cm-1). This value concurs with low temperature magnetic susceptibility measurements on both the porcine and splenic purple acid phosphatases. The isotropically shifted protons of tyrosine coordinated to the cluster are assigned by comparison with synthetic complexes. Tyrosine, earlier implicated as a ligand by resonance Raman spectroscopy, appears to coordinate only to the ferric site in pink uteroferrin. This is consistent with the relatively invariant extinction coefficients of uteroferrin in its oxidized and reduced forms and the ease of reduction of the nonchromophoric iron compared to its chromophoric partner. Other possible ligands to the cluster include histidine, suggested by the presence of downfield-shifted solvent-exchangeable resonances with appropriate isotropic shifts.  相似文献   

4.
Uteroferrin, an acid phosphatase with a spin-coupled and redox-active binuclear iron center, is paramagnetic in its pink, enzymatically active, mixed-valence (S = 1/2) state. Phosphate, a product and inhibitor of the enzymatic activity of uteroferrin, converts the pink, EPR-active form of the protein to a purple, EPR-silent species. In contrast, molybdate, a tetrahedral oxyanion analog of phosphate, transforms the EPR spectrum of uteroferrin from a rhombic to an axial form. With both electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) spectroscopies, we observe a hyperfine interaction of [95Mo]molybdate with the S = 1/2, Fe(II)-Fe(III) center of the protein. A pair of 95Mo resonances centered at the 95Mo Larmor frequency at the applied magnetic field and separated by a hyperfine coupling constant of 1.2 MHz is evident. Therefore, a single monomeric species of molybdate is close to, and likely a ligand of, the binuclear cluster. 1H ENDOR studies on uteroferrin reveal at least six sets of lines mirrored about the 1H Larmor frequency. Two pairs of these lines become reduced in intensity when the protein is exchanged against D2O. Moreover, ESEEM and 2H ENDOR spectra display resonances at the 2H Larmor frequency. Therefore, the metal-binding region of the protein is accessible to solvent. Additional deuterium lines observable by ESEEM spectroscopy provide evidence for a population of strongly coupled, readily exchangeable protons associated with the binuclear center. The measured hyperfine coupling constants for these deuterons are orientation-dependent with splittings of nearly 4 MHz at g3 = 1.59 and less than 1 MHz at g1 = 1.94. In the presence of molybdate, ESEEM spectra of D2O-exchanged samples reveal a resonance at the 2H Larmor frequency, with no evidence of spectral components due to strongly coupled deuterons. 1H ENDOR studies of the uteroferrin-molybdate complex show at least seven pairs of lines, mirrored about the 1H Larmor frequency, of which one pair becomes attenuated in amplitude upon deuteration. The active site thus remains accessible to solvent in the presence of molybdate.  相似文献   

5.
The exchange coupling of reduced uteroferrin has been measured (19.8(5) cm-1 S1.S2) using recently developed techniques for studying metalloprotein magnetization. A spin Hamiltonian describing the coupled binuclear Fe(II).Fe(III) center has been used to fit the low and high field magnetization data, the EPR g values, and the highly anisotropic effective hyperfine tensor of the ferric site. The exchange coupling of the phosphate complex of reduced uteroferrin has also been measured (6.0(5) cm-1 S1.S2) using the same techniques. The smaller exchange coupling of the phosphate complex is comparable with the zero field splittings of the iron sites. This results in increased sensitivity of the system g values (found by calculation from the spin Hamiltonian) to variations of the zero field splitting parameters arising from heterogeneities in the protein microenvironment. Consequently, there is a very significant (9-fold) increase in the "effective g strain" of the system compared to the situation in the absence of phosphate. This, together with the larger g anisotropy (g = (1.06, 1.51, 2.27)), gives rise to an EPR signal for the phosphate complex of reduced uteroferrin which is extremely broad and difficult to detect but which has now been identified for the first time.  相似文献   

6.
The interaction of phosphate with reduced uteroferrin has been re-examined in light of disagreements on the oxidation state of the binuclear iron cluster (Keough, D. T., Beck, J. L., de Jersey, J., and Zerner, B. (1982) Biochem. Biophys. Res. Commun. 108, 1643-1648; Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756). Our results based on Mossbauer observations and the kinetics of spectral change and activity loss show clearly that phosphate binds to reduced uteroferrin to form a reduced uteroferrin-phosphate complex. This complex exhibits a pair of quadrupole doublets at 119 K with parameters typical of a high spin ferric and a high spin ferrous center, respectively, but distinct from those of the native reduced enzyme. The reduced phosphate complex exhibits a pH-dependent visible absorption maximum ranging from 530 to 561 nm. In air, the reduced phosphate complex converts to the oxidized phosphate complex with a first order rate constant of 4 X 10(-3) min-1, as monitored by spectral changes and loss of enzyme activity.  相似文献   

7.
Transfer of iron from native porcine uteroferrin to apotransferrin was investigated using EPR spectroscopy. Purple (oxidized) or pink (reduced) forms of uteroferrin were incubated with porcine or human apotransferrin under conditions of temperature (37 degrees C) and pH (6.8) approximating those found in the allantoic fluid of the pregnant sow. Studies were also performed in the presence of mediators such as ascorbate, citrate, and ATP in concentrations previously claimed to be effective in promoting large-scale transfer of iron (Buhi, W. C., Ducsay, C. A., Bazer, F. W., and Roberts, R. M. (1982) J. Biol. Chem. 257, 1712-1723). Our experiments indicate that even in the presence of mediators, less than 20% of the iron in uteroferrin is transferred to apotransferrin at the end of 24 h and such transfer may be accompanied by denaturation of uteroferrin. We therefore conclude that the direct transfer of iron to apotransferrin is unlikely to be a physiological role of uteroferrin.  相似文献   

8.
Bernhardt PV  Schenk G  Wilson GJ 《Biochemistry》2004,43(32):10387-10392
Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (FeIII-FeII --> FeII-FeIII) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Uf(o)) have been determined. The effect of pH on the redox potentials has been investigated in the range 3 < pH < 6.5, enabling acid dissociation constants for Uf(o) and its phosphate and arsenate complexes to be calculated.  相似文献   

9.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Uteroferrin, a purple-colored, iron-containing glycoprotein, purified from the uterine fluid of progesterone-stimulated pigs, owes its natural purple color to a broad absorption band centered at 545 nm. Laser excitation within the visible absorption band of uteroferrin results in an intense resonance Raman spectrum which bears a striking resemblance to that reported for Fe(III)-transferrin, the iron transport protein of serum. Excitation profiles for the four resonance-enhanced bands of uteroferrin were obtained from 4579 A to 6741 A, using lines from Ar+ and Kr+ lasers. Each of the profiles have maxima near 545 nm. The spectral similarities of uteroferrin and Fe(III)-transferrin lead to the belief that the Fe(III) binding sites of the two proteins must be, at least in some respects, quite similar. In particular, it is concluded that, as in Fe(III)-transferrin, the metal binding site of uteroferrin contains a tyrosine ligand and that the visible absorption spectrum of uteroferrin results from a phenolate to Fe(III) charge transfer.  相似文献   

11.
A pink, high molecular weight form of uteroferrin (Uf) has been isolated from uterine secretions and allantoic fluid of pigs. This protein fraction (denoted FIII) which is relatively stable under physiological conditions of pH, ionic strength, and temperature has a molecular weight of about 80,000, a value approximately twice that of purple Uf (Mr approximately 35,000) isolated from a separate fraction (FIV) by gel filtration. The visible absorption spectrum, EPR signal, and acid phosphatase activity of Uf in FIII are almost identical to those of FIV Uf after the latter has been reduced by 2-mercaptoethanol. However, unlike reduced FIV Uf, the pink, high molecular form does not revert to purple, nor does it show loss of EPR signal and phosphatase activity in the presence of oxygen. In addition, it does not become purple at orthophosphate concentrations which inhibit Uf acid phosphatase activity. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate has shown that FIII consists of approximately equal amounts of Uf polypeptides (Mr = 35,000 and 37,000) and a group of three polypeptides (Mr = 40,000, 46,000, and 50,000) antigenically unrelated to Uf. The latter share a common epitope not found on Uf and are probably differentially processed forms of the same protein. FIII can be dissociated by pH conditions below 5.0, by exposure to antibodies raised against Uf or the associated polypeptides, and by sodium dodecyl sulfate at 100 degrees C. The polypeptides in FIII are not therefore linked by disulfide bonds. Treatment with dimethyl suberimidate, however, results in a cross-linked complex (Mr approximately 82,000) consisting of Uf and the associated polypeptides. It is concluded that this high Mr form of Uf is a heterodimer of fully activated Uf and a second polypeptide of unknown function.  相似文献   

12.
Applying recent developments in protein purification techniques, a number of lipoxygenase isoenzymes have been isolated in satisfactory quantities for a detailed physical and structural characterization. Four seed isoenzymes from two soybean cultivars have been studied by peptide mapping, free thiol and iron content determinations, and C-terminal analysis as well as by uv-visible absorption and EPR spectroscopy. While differences between the type 1 enzyme and the other isoenzymes were readily detected using proteolytic peptide mapping, digestion with dilute hydrochloric acid and C-terminal analysis both revealed structural features which were similar in all of the isoenzymes. One clear difference between the lipoxygenases was in their free sulfhydryl group content. The uv-visible absorption spectrum of each native isoenzyme was consistent with expectations for the experimental aromatic amino acid content. All of the isoenzymes contained one non-heme iron atom per molecule of protein. The oxidation of each isoenzyme with product hydroperoxide resulted in the conversion of the iron from an EPR silent state into several forms with EPR signals characteristic of high spin iron(III). The EPR spectra of all isoenzymes were remarkably similar. A time course EPR and catalytic activity study revealed that the various EPR active states represent a complex equilibrium between iron atoms in different environments. The pH dependence for the EPR and absorption spectroscopy lends support to the hypothesis that acid/base chemistry represents an important aspect of lipoxygenase catalysis.  相似文献   

13.
M Sivaraja  J Tso  G C Dismukes 《Biochemistry》1989,28(24):9459-9464
EPR studies have revealed that removal of calcium using citric acid from the site in spinach photosystem II which is coupled to the photosynthetic O2-evolving process produces a structural change in the manganese cluster responsible for water oxidation. If done in the dark, this yields a modified S1' oxidation state which can be photooxidized above 250 K to form a structurally altered S2' state, as seen by formation of a "modified" multiline EPR signal. Compared to the "normal" S2 state, this new S2'-state EPR signal has more lines (at least 25) and 25% narrower 55Mn hyperfine splittings, indicative of disruption of the ligands to manganese. The calcium-depleted S2' oxidation state is greatly stabilized compared to the native S2 oxidation state, as seen by a large increase in the lifetime of the S2' EPR signal. Calcium reconstitution results in the reduction of the oxidized tyrosine residue 161YD+ (Em approximately 0.7-0.8 V, NHE) within the reaction center D1 protein in both the S1' and S2' states, as monitored by its EPR signal intensity. We attribute this to reduction by Mn. Thus a possible structural role which calcium plays is to bring YD+ into redox equilibrium with the Mn cluster. Photooxidation of S2' above 250 K produces a higher S state (S3 or S4) having a new EPR signal at g = 2.004 +/- 0.003 and a symmetric line width of 163 +/- 3 G, suggestive of oxidation of an organic donor, possibly an amino acid, in magnetic contact with the Mn cluster. This EPR signal forms in a stoichiometry of 1-2 relative to YD+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
There is continuing controversy as to whether iron can be exchanged from the purple phosphatase, uteroferrin (Uf), to fetal transferrin (Tf) and whether this process might be of physiological relevance during pregnancy in the pig. Here, iron transfer from Uf to apoTf at pH 7.1 was followed by measuring the loss of acid phosphatase activity from native Uf as a function of incubation conditions and time. In the presence of apoTf and 1 mM ascorbate (but not in the presence of either agent alone), 50% of enzyme activity was lost in about 12 h. Loss of activity was accompanied by bleaching of Uf purple color and the appearance of the characteristic visual absorption spectrum of Fe-Tf. Citrate could replace ascorbate in the reaction. Loss of Uf iron did not occur at pH 5.3, at which pH Tf cannot bind Fe. [59Fe]Uf was prepared and shown to be identical in its enzymatic and physical properties with unmodified Uf. Transfer of 59Fe from Uf to apo-Tf was promoted by conditions identical to those which led to loss of purple color and acid phosphatase activity. However, the results suggested that only one of the two iron atoms at the bi-iron center on Uf was readily lost, and that exchange of the second iron occurred more slowly. Loss of iron made Uf more susceptible to denaturation. A third technique, quantitation of the g' = 4.3 signal of iron specifically bound to Tf by EPR, was also tested as a means assaying accumulation of Fe-Tf, but the method was too insensitive to measure the kinetics of iron transfer at physiological protein concentrations. We conclude that iron can be transferred directly from Uf to apoTf in the presence of low molecular weight chelators, and that the process is likely to be of physiological significance.  相似文献   

15.
Under anaerobic conditions the molybdenum-iron protein (MoFe protein) from Azotobacter vinelandii can be reversibly oxidized with thionine. Electron paramagnetic resonance studies reveal that the oxidation proceeds in two distinct phases: the MoFe protein can be oxidized by four electrons without loss of the EPR signal from the S = 3/2 cofactor centers. A second oxidation step, involving two electrons, leads to the disappearance of the cofactor EPR signal. In order to correlate the events during the thionine titration with redox reactions involving individual iron centers we have studied the MoFe proteins from A vinelandii and Clostridium pasteurianum with M?ssbauer spectroscopy. Spectra were taken in the temperature range from 1.5 K to 200 K in applied magnetic fields of up to 54 kG. Analysis of the M?ssbauer data allows us to draw three major conclusions: (1) the holoprotein contains 30 +/- 2 iron atoms. (2) Most probably, 12 iron atoms belong to two, apparently identical, iron clusters (labeled M) which we have shown previously to be structural components of the iron and molybdenum containing cofactor of nitrogenase. The M-centers can be stabilized in three distinct oxidation states, MOXe- in equilibrium MNe- in equilibrium MR. The diamagnetic (S = 0) state MOX is attained by oxidation of the native state MN with either thionine or oxygen. MR is observed under nitrogen fixing conditions. (3) The data strongly suggest that 16 iron atoms are associated with four iron centers which we propose to call P-clusters. Each P-cluster contains four spin-coupled iron atoms. In the native protein the P-clusters are in the diamagnetic state PN, yielding the M?ssbauer signature which we have labeled previously 'components D and Fe2+'. Three irons of the D-type and one iron of the Fe2+-type appear to comprise a P-cluster. A one-electron oxidation yields the paramagnetic state POX. Although the state POX is characterized by half-integral electronic spin a peculiar combination of zero-field splitting parameters and spin relaxation renders this state EPR-silent. Spectroscopically, the P-clusters are novel structures; there is, however, evidence that they are closely related to familiar 4Fe-4S centers.  相似文献   

16.
The progesterone-induced purple phosphatase isolated from the uterine flushings of pigs is activated by a variety of reagents that cleave disulfide bonds, including 2-mercaptoethanol, dithiothreitol, L-ascorbate, L-cysteine, sulfite, and cyanide. It is inhibited by various mercurials, iodoacetamide, O-iodosobenzoate, and hydrogen peroxide. Thiols increase the specific phosphatase activity from 25 to about 300 units per mg of enzyme. This activation is accompanied by a shift in the extinction maximum to higher energy to yield a protein with a pink coloration. Following maximum activation there is a gradual decrease in enzyme activity and protein color which is accompanied by loss of ferrous iron from the protein. Sodium dithionite at 10 mM or higher causes an immediate inhibition of phosphatase activity and bleaching of color, and can be used to prepare the iron-free apoprotein. The latter can be partially reactivated by Fe3+ salts but not by Fe2+. The Fe3+ restores the pink form of the enzyme with a specific activity of about 200 units/mg of protein. Cu2+ also causes some reactivation, but other metal ions were ineffective. ESR studies showed that the pink form of phosphatase contains approximately 1 atom of high spin ferric iron per molecule. It is concluded that the phosphatase requires a free thiol and Fe3+ for activity. Reduction of the iron leads to complete loss of both color and enzyme activity. The color change from purple to pink represents disulfide reduction and is not due to reduction of iron.  相似文献   

17.
The aerobic interaction between ascorbate oxidase and L-tyrosine, L-3,4-dihydroxyphenylalanine or 3,4-dihydroxycinnamic acid in 1:10 molar ratio was followed by optical absorption, CD and EPR spectroscopy in 0.1 M phosphate buffer at pH 5.0. While the spectra of the system ascorbate oxidase—L-tyrosine remain practically unaffected after several hours, indicating that no oxidation of the amino acid occurs in the conditions employed, rather drastic changes can be observed in the spectra of the ascorbate oxidase-catechol systems. In particular, while the optical absorption below 500 nm increases markedly due to the formation of the substrate oxidation products, an irreversible decrease in intensity of the absorption, CD and EPR spectral features associated with the blue copper(II) chromophores indicates that a partial loss of Type 1 copper by ascorbate oxidase has occurred during this secondary catechol oxidase activity. A copper species characterized by weak positive CD activity at 370 nm and EPR signal at intermediate field between those of the Type 2 and Type 1 coppers can be detected in the early stages of the reaction. The irreversible damage undergone by the protein during catechol oxidase activity may have biological significance and accounts for the low yield of purified enzyme obtained when the crude enzyme extract is left in prolonged contact with low molecular weight cell components, rich in σ-diphenolic compounds.  相似文献   

18.
myo-Inositol oxygenase (MIOX) uses iron as its cofactor and dioxygen as its cosubstrate to effect the unique, ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate to d-glucuronate. The nature of the iron cofactor and its interaction with the substrate, myo-inositol (MI), have been probed by electron paramagnetic resonance (EPR) and M?ssbauer spectroscopies. The data demonstrate the formation of an antiferromagnetically coupled, high-spin diiron(III/III) cluster upon treatment of solutions of Fe(II) and MIOX with excess O(2) or H(2)O(2) and the formation of an antiferromagnetically coupled, valence-localized, high-spin diiron(II/III) cluster upon treatment with either limiting O(2) or excess O(2) in the presence of a mild reductant (e.g., ascorbate). Marked changes to the spectra of both redox forms upon addition of MI and analogy to changes induced by binding of phosphate to the diiron(II/III) cluster of the protein phosphatase, uteroferrin, suggest that MI coordinates directly to the diiron cluster, most likely in a bridging mode. The addition of MIOX to the growing family of non-heme diiron oxygenases expands the catalytic range of the family beyond the two-electron oxidation (hydroxylation and dehydrogenation) reactions catalyzed by its more extensively studied members such as methane monooxygenase and stearoyl acyl carrier protein Delta(9)-desaturase.  相似文献   

19.
Irreversible disassembly of the 4Fe-4S cluster in Chromatium vinosum high-potential iron protein (HiPIP) has been investigated in the presence of a low concentration of guanidinium hydrochloride. From the dependence of degradation rate on [H+], it is deduced that at least three protons are required to trigger efficient cluster degradation. Under these conditions the protonated cluster shows broadened M?ssbauer signals, but delta EQ (1.1 mm/s) and delta (0.44 mm/s) are similar to the native form. Collapse of the protonated transition state complex, revealed by rapid-quench M?ssbauer experiments, occurs with a measured rate constant kobs approximately 0.72 +/- 0.35 s-1 that is consistent with results from time-resolved electronic absorption and fluorescence (kobs approximately 0.4 +/- 0.1 s-1) and EPR (kobs approximately 0.62 +/- 0.18 s-1) measurements. Apparently, guanidinium hydrochloride serves to perturb the tertiary structure of the protein, facilitating protonation of the cluster, but not degradation per se. Release of iron ions occurs even more slowly with kobs approximately 0.07 +/- 0.02 s-1, as determined by the appearance of the g = 4.3 EPR signal. Proton-mediated cluster degradation is sensitive to the oxidation state of the cluster, with the oxidized state showing a two-fold slower rate in acidic solutions as a result of increased electrostatic repulsion with the cluster. Consistent results are obtained from absorption, fluorescence, M?ssbauer and EPR measurements.  相似文献   

20.
Reaction of the reduced (pink) form of the purple acid phosphatase from beef spleen with excess phosphate at pH 5.0, monitored by optical and low temperature EPR spectroscopy and by measurement of enzymatic activity, results in parallel loss of activity and oxidation of the iron chromophore. Colorimetric and radiochemical (32P) experiments indicate the presence of one mole of tightly bound phosphate in the oxidized (purple) form of the enzyme; this phosphate is released upon reduction. Acid hydrolysis of 32P-phosphate-containing enzyme, followed by high voltage paper electrophoresis, gave no evidence for significant amounts of acid-stable phosphoamino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号