首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erectile dysfunction (ED) is a common and debilitating pathological development that affects up to 75% of diabetic males. Neural stimulation is a crucial aspect of the normal erection process. Nerve injury causes ED and disrupts signaling of the Sonic hedgehog (Shh) cascade in the smooth muscle of the corpora cavernosa. Shh and targets of its signaling establish normal corpora cavernosal morphology during postnatal differentiation of the penis and regulate homeostasis in the adult. Interruption of the Shh cascade in the smooth muscle of the corpora cavernosa results in extensive changes in corpora cavernosal morphology that lead to ED. Our hypothesis is that the neuropathy observed in diabetics causes morphological changes in the corpora cavernosa of the penis that result in ED. Disruption of the Shh cascade may be involved in this process. We tested this hypothesis by examining morphological changes in the penis, altered gene and protein expression, apoptosis, and bromodeoxyuridine incorporation in the BB/WOR rat model of diabetes. Extensive smooth muscle and endothelial degradation was observed in the corpora cavernosa of diabetic penes. This degradation accompanied profound ED, significantly decreased Shh protein in the smooth muscle of the corpora cavernosa, and increased penile Shh RNA expression in the intact penis (nerves, corpora, and urethra). Localization and expression of Shh targets were also disrupted in the corpora cavernosa. Increasing our understanding of the molecular mechanisms that regulate Shh signaling may provide valuable insight into improving treatment options for diabetic impotence.  相似文献   

2.
Nitric oxide (NO) is the principal mediator of penile erection. NO is synthesized by nitric oxide synthase (NOS). It has been well documented that the major causative factor contributing to erectile dysfunction in diabetic patients is the reduction in the amount of NO synthesis in the corpora cavernosa of the penis resulting in alterations of normal penile homeostasis. Arginase is an enzyme that shares a common substrate with NOS, thus arginase may downregulate NO production by competing with NOS for this substrate, l-arginine. The purpose of the present study was to compare arginase gene expression, protein levels, and enzyme activity in diabetic human cavernosal tissue. When compared to normal human cavernosal tissue, diabetic corpus cavernosum from humans with erectile dysfunction had higher levels of arginase II protein, gene expression, and enzyme activity. In contrast, gene expression and protein levels of arginase I were not significantly different in diabetic cavernosal tissue when compared to control tissue. The reduced ability of diabetic tissue to convert l-arginine to l-citrulline via nitric oxide synthase was reversed by the selective inhibition of arginase by 2(S)-amino-6-boronohexanoic acid (ABH). These data suggest that the increased expression of arginase II in diabetic cavernosal tissue may contribute to the erectile dysfunction associated with this common disease process and may play a role in other manifestations of diabetic disease in which nitric oxide production is decreased.  相似文献   

3.
Summary The present study investigated the distribution of neuropeptide Y-immunoreactive fibers to the penis of the rat. In the corpora cavernosa penis, a dense plexus of fibers was asociated with arteries, intrinsic cavernosal muscle, and veins including the deep dorsal vein. In the corpus spongiosum, immunoreactive fibers were present around vascular smooth muscle and at the periphery of the acini of the paraurethral glands. Immunohistochemistry of penile neurons identified by retrograde tracer injection into the penis indicates that about 5% of the penile neurons in the pelvic plexus contained the neuropeptide while larger percentages of penile neurons in the sympathetic chains were immunoreactive for neuropeptide Y. Chemical and surgical sympathectomy greatly reduced the neuropeptide Y- and catecholamine-containing fibers in the erectile tissue but had no clear effect on the neuropeptide Y fibers around the paraurethral glands; a tissue that is not innervated by adrenergic fibers. It is concluded that (1) the widespread distribution of neuropeptide Y indicates that it may function in the control of penile blood flow, (2) with the possible exception of the paraurethral glands, the sympathetic chain is the most likely source of neuropeptide Y fibers in both erectile bodies of the penis, and (3) this peptide may play a role in the secretory functions of the paraurethral glands.  相似文献   

4.
Erectile dysfunction in the aging male is caused, in part, by inadequate relaxation of the corpora cavernosal smooth musculature. Calcitonin gene-related peptide (CGRP), a peptide neurotrasmitter localized in the corpora cavernosa, is down-regulated in the aging rat penis. We examined the hypothesis that this reduction in CGRP may contribute to decreased cavernosal smooth muscle relaxation. Therefore, we sought to determine whether adenoviral-mediated gene transfer of prepro-CGRP (AdRSVCGRP) could enhance erectile responses in aged rats. We found a significant decrease in CGRP concentrations and in cAMP and cGMP levels in aged rat cavernosal tissue compared to younger rats. Aged rats also had significantly lower erectile function as determined by cavernosal nerve stimulation compared to younger rats. Five days after transfection with AdRSVCGRP, these aged rats had an approximately threefold increase in cavernosal CGRP levels compared to animals transfected with adenoviruses encoding nuclear-targeted beta-galactosidase (AdRSV beta gal). The AdRSVCGRP-transfected animals also demonstrated an increase in CGRP mRNA and immunohistochemical localization of CGRP in the smooth muscle of the corpora cavernosa. In addition, cAMP levels in the corpora cavernosa were significantly increased, whereas cGMP levels remained unchanged. Adenoviral transduction efficiency of beta-galactosidase reporter gene was measured by chemiluminescence and was observed in cavernosal tissue 5 days after transfection with AdRSV beta gal. More importantly, 5 days after administration of AdRSVCGRP, a significant increase was observed in the erectile response to cavernosal nerve stimulation in the aged rat, similar to the response observed in younger rats. These data suggest that in vivo adenoviral gene transfer of CGRP can physiologically improve erectile function in the aged rat.  相似文献   

5.
6.
Nitrergic neurotransmission triggering penile erection is mediated by nitric oxide (NO) synthesized in the cavernosal nerves of the penis by penile neuronal NO synthase (PnNOS). In the central nervous system, nNOS is activated by the N-methyl-D-aspartate receptor (NMDAR) and, presumably, is inhibited by the protein inhibitor of NOS (PIN). The PnNOS and NMDAR are expressed in the penis, and PnNOS has been localized in penile nerves. Both proteins colocalize with PIN in the hypothalamus and the spinal cord involved in the control of erection. The present study aimed to elucidate the relationship between PnNOS, PIN, and NMDAR in the penis. It was found that in the rat, PIN was expressed in the pelvic ganglion and the cavernosal nerve, and penile PIN cDNA was cloned, sequenced, and expressed. Immunohistochemistry localized PIN to the cavernosal and dorsal nerve of the penis, whereas NMDAR was not detected in the latter. Dual-fluorescence labeling showed that PnNOS colocalized with PIN in both nerves but with NMDAR only in the cavernosal nerve. Aging did not affect the mRNA levels of PnNOS, nNOS, NMDAR, and PIN. Both PIN and NMDAR were detected in penile nerves of the wild-type and nNOS(-/-) mouse. The PIN protein did not inhibit or bind NOS in penile extracts, and in vivo, PIN cDNA reduced the erectile response to electrical field stimulation. In conclusion, PIN and NMDAR colocalize with PnNOS in penile nerves, but the functional significance of these protein interactions for penile erection remains to be elucidated.  相似文献   

7.
Erectile dysfunction (ED) is a debilitating medical condition and current treatments are ineffective in patients with cavernous nerve (CN) injury, due to penile remodeling and apoptosis. A critical regulator of penile smooth muscle and apoptosis is the secreted protein sonic hedgehog (SHH). SHH protein is decreased in rat prostatectomy and diabetic ED models, SHH inhibition in the penis induces apoptosis and ED, and SHH treatment at the time of CN injury suppresses smooth muscle apoptosis and promotes regeneration of erectile function. Thus SHH treatment has significant translational potential as an ED therapy if similar mechanisms underlie ED development in patients. In this study we quantify SHH protein and morphological changes in corpora cavernosal tissue of control, prostatectomy and diabetic patients and hypothesize that decreased SHH protein is an underlying cause of ED development in prostatectomy and diabetic patients. Our results show significantly decreased SHH protein in prostatectomy and diabetic penis. Morphological remodelling of the penis, including significantly increased apoptotic index and decreased smooth muscle/collagen ratio, accompanies declining SHH. SHH signaling is active in human penis and is altered in a parallel manner to previous observations in the rat. These results suggest that SHH has significant potential to be developed as an ED therapy in prostatectomy and diabetic patients. The increased apoptotic index long after initial injury is suggestive of ongoing remodeling that may be clinically manipulatable.  相似文献   

8.
Relaxation of the smooth muscle cells in the cavernosal arterioles and sinuses results in increased blood flow into the penis, raising corpus cavernosum pressure to culminate in penile erection. Nitric oxide, released from non-adrenergic/non-cholinergic nerves, is considered the principle stimulator of cavernosal smooth muscle relaxation, however, the inhibition of vasoconstrictors (that is, norepinephrine and endothelin-1, refs. 5-9) cannot be ignored as a potential regulator of penile erection. The calcium-sensitizing rho-A/Rho-kinase pathway may play a synergistic role in cavernosal vasoconstriction to maintain penile flaccidity. Rho-kinase is known to inhibit myosin light chain phosphatase, and to directly phosphorylate myosin light-chain (in solution), altogether resulting in a net increase in activated myosin and the promotion of cellular contraction. Although Rho-kinase protein and mRNA have been detected in cavernosal tissue, the role of Rho-kinase in the regulation of cavernosal tone is unknown. Using pharmacologic antagonism (Y-27632, ref. 13, 18), we examined the role of Rho-kinase in cavernosal tone, based on the hypothesis that antagonism of Rho-kinase results in increased corpus cavernosum pressure, initiating the erectile response independently of nitric oxide. Our finding, that Rho-kinase antagonism stimulates rat penile erection independently of nitric oxide, introduces a potential alternate avenue for the treatment of erectile dysfunction.  相似文献   

9.
Regulation of pancreas development by hedgehog signaling   总被引:27,自引:0,他引:27  
Pancreas organogenesis is regulated by the interaction of distinct signaling pathways that promote or restrict morphogenesis and cell differentiation. Previous work has shown that activin, a TGF(beta+) signaling molecule, permits pancreas development by repressing expression of Sonic hedgehog (Shh), a member of the hedgehog family of signaling molecules that antagonize pancreas development. Here we show that Indian hedgehog (Ihh), another hedgehog family member, and Patched 1 (Ptc1), a receptor and negative regulator of hedgehog activity, are expressed in pancreatic tissue. Targeted inactivation of Ihh in mice allows ectopic branching of ventral pancreatic tissue resulting in an annulus that encircles the duodenum, a phenotype frequently observed in humans suffering from a rare disorder known as annular pancreas. Shh(-)(/)(-) and Shh(-)(/)(-) Ihh(+/)(-) mutants have a threefold increase in pancreas mass, and a fourfold increase in pancreatic endocrine cell numbers. In contrast, mutations in Ptc1 reduce pancreas gene expression and impair glucose homeostasis. Thus, islet cell, pancreatic mass and pancreatic morphogenesis are regulated by hedgehog signaling molecules expressed within and adjacent to the embryonic pancreas. Defects in hedgehog signaling may lead to congenital pancreatic malformations and glucose intolerance.  相似文献   

10.
NADPH-diaphorase (NADPH-D) activity and immunoreactivity for neural and endothelial nitric oxide synthase (nNOS and eNOS, respectively) were used to investigate nitric oxide (NO) regulation of penile vasculature. Both the histochemical and immunohistochemical techniques for NOS showed that all smooth muscles regions of the penis (dorsal penile artery and vein, deep penile vessels, and cavernosal muscles) were richly innervated. The endothelium of penile arteries, deep dorsal penile vein, and select veins in the crura and shaft were also stained for NADPH-D and eNOS. However, the endothelium of cavernous sinuses was unstained by both techniques. Fewer fibers were seen in the glans penis, those present being associated with small blood vessels and large nerve bundles near the trabecular walls. All penile neurons in the pelvic plexus, located by retrograde transport of a dye placed in the corpora cavernosa penis, were stained by the NADPH-D method. Essentially similar results were obtained with an antibody to nNOS. These data suggest that penile parasympathetic neurons comprise a uniform population, as all seem capable of forming nitric oxide. However, in contrast to the endothelium of penile vessels, the endothelium lining the cavernosal spaces may not be capable of nitric oxide synthesis.  相似文献   

11.
Thirty to eighty-seven percent of patients treated by radical prostatectomy experience erectile dysfunction (ED). The reduced efficacy of treatments in this population makes novel therapeutic approaches to treat ED essential. We propose that abundant apoptosis observed in penile smooth muscle when the cavernous nerve (CN) is cut (mimicking the neural injury which can result from prostatectomy) is a major contributing factor to ED development. We hypothesize that decreased Sonic hedgehog (SHH) signaling is a cause of ED in neurological models of impotence by increasing apoptosis in penile smooth muscle. We examined this hypothesis in a bilateral CN injury model of ED. We found that the active form of SHH protein was significantly decreased 1.2-fold following CN injury, that SHH inhibition causes a 12-fold increase in smooth muscle apoptosis in the penis, and that SHH treatment at the time of CN injury was able to decrease CN injury-induced apoptosis (1-3-fold) in a dose-dependent manner. These results show that SHH stabilizes the alterations of the corpora cavernosal smooth muscle following nerve injury.  相似文献   

12.
Increased superoxide anion (O(2)(-).) may contribute to vascular dysfunction in aging. In aged cavernosal tissue, lucigenin-enhanced chemiluminescence demonstrated a threefold increase in superoxide formation, and the oxidative fluorescent probe hydroethidine indicated higher superoxide levels throughout the aged penis. This increase in superoxide was associated with impaired cavernosal nerve-mediated and agonist-induced erectile responses, increased nitrotyrosine staining, and lower cGMP levels, but no compensatory change in cavernosal extracellular (EC)-superoxide dismutase (EC-SOD) mRNA or protein. In vivo adenoviral (Ad) gene transfer of EC-SOD to the penis resulted in higher expression of EC-SOD mRNA, protein, SOD activity, cGMP levels, and lower nitrotyrosine staining. Transfection with AdCMVEC-SOD resulted in a significant increase in erectile response to cavernosal nerve stimulation, ACh, and zaprinast to a magnitude similar to young rats. These data provide evidence in support of the hypothesis that erectile dysfunction associated with aging is related in part to an increase in cavernosal O(2)(-). formation. Gene-transfer of EC-SOD reduces superoxide formation and restores age-associated erectile function and may represent a novel therapeutic target for the treatment of erectile dysfunction.  相似文献   

13.
Penile erection is a muscular and vascular event mediated by the autonomic nervous system. The neurophysiology of erection remains poorly understood and controversial, requiring a suitable model for in-vitro studies of erectile function. Such a model, based in the rat whose penile innervation is very similar to man, is described here. The first study using this model considers the influence of systemic blodd pressure (BP) on penile erection. In 33 anaesthetized rats the pelvic and cavernosal nerves were identified and dissected. Supra maximal electrical stimulation was delivered over 1 minute by a train of 1 ms pulses onto the pelvic nerve (10 V, 15 Hz) or the cavernosal nerve (6 V, 10 Hz). Systemic blood pressure and intracavernosal pressure (ICP) were monitored and stored on a computer. As in previous animal models (dog, monkey), four phases of the cavernosal response to neural electrical stimulation were observed: latency, tumescence, full erection, and détumescence. In all rats electrical stimulation of either the pelvic or cavernosal nerves significantly increased intracavernosal pressure. Complete erectile response (rigidity and unfolding of the penis) was only seen with intracavernosal pressures > 95 mm Hg. Intracavernosal pressure increased proportionally with blood preessure during the full erection phase according to the equation ICP=0.94 BP ? 31 mm Hg (r=0.94 BP ? 31 mm Hg (r=0.94) for electrical stimulation of the cavernosal nerve, or the alternative aquation ICP=0.76 BP ? 21 mm Hg (r=0.73) for electrical stimulation of the pelvic nerve. The rat is a readily available model for the study of erection and present obvious advantages over existing models such as the dog, cat and monkey. Cavernosal repsonse to neural stimulation was closely related to arterial blood pressure and the two linear equations presented above should be considered further in studies modifying autonomic neurotransmission as well as in relation to the effects of pharmacological compounds with vasomotor actions on erectile function.  相似文献   

14.
Peyronie's disease is a pathological condition of the penis which is characterized by localized ossification of the tunica albuginea. A common symptom of the chronic stage is penile deformity during erection, which is frequently associated with pain and erectile dysfunction. A two-dimensional biomechanical model of the penis was applied to study the development of Peyronie’s disease by simulating the mechanical stress distribution which would result from the interaction of the ossified tunical tissue with other penile soft tissues. The model was solved by using commercial finite element software for a characteristic erectile pressure. The results demonstrate that Peyronie’s plaques may induce intensified stresses around the penile nerves and blood vessels, up to double those in the normal penis. These elevated stresses may cause a painful sensation of neural origin or ischemia in regions of compressed vascular tissue. Severe penile deformities have been shown to develop if Peyronie’s plaques develop only around one of the corpora cavernosa due to the non-homogeneous resistance of the tunica to expansion during erection. The present model can be clinically applied as an aid in the planning process of reconstructive surgery or insertion of a prosthesis.  相似文献   

15.
Androgen maintenance of erectile function in the rat penis.   总被引:5,自引:0,他引:5  
Previous research has shown that the frequency and duration of penile erection is diminished after castration and that replacement with testosterone will restore the process. Using rats, the present study was designed to confirm that erection is androgen-dependent and to determine whether castration and androgen replacement affect the penile vascular smooth muscle responsiveness to vasoactive drugs. Blood pressure in the corpus cavernosum was measured directly during erections induced by electrical stimulation of the autonomic innervation of the penis. Maximal cavernosal pressure was markedly reduced after castration but was returned to normal levels if the castrated animals were treated with testosterone. Infusion of nitroglycerin (vasodilator) or phenylephrine (vasoconstrictor) resulted in a decline in cavernosal pressure in androgen-treated animals but not in castrated animals, even though the mean arterial blood pressure was strongly affected in all treatment groups by these drugs. When an inhibitor of nitric oxide synthesis was infused, cavernosal pressure was decreased in all groups, indicating that this substance is involved in penile erection. Taken together, these results show that androgens maintain the erectile process and may act specifically to support the responsiveness of the vascular smooth muscle to vasoactive drugs.  相似文献   

16.
17.
18.
The role of sonic hedgehog (SHH) in maintaining corpora cavernosal morphology in the adult penis has been established; however, the mechanism of how SHH itself is regulated remains unclear. Since decreased SHH protein is a cause of smooth muscle apoptosis and erectile dysfunction (ED) in the penis, and SHH treatment can suppress cavernous nerve (CN) injury-induced apoptosis, the question of how SHH signaling is regulated is significant. It is likely that neural input is involved in this process since two models of neuropathy-induced ED exhibit decreased SHH protein and increased apoptosis in the penis. We propose the hypothesis that SHH abundance in the corpora cavernosa is regulated by SHH signaling in the pelvic ganglia, neural activity, or neural transport of a trophic factor from the pelvic ganglia to the corpora. We have examined each of these potential mechanisms. SHH inhibition in the penis shows a 12-fold increase in smooth muscle apoptosis. SHH inhibition in the pelvic ganglia causes significantly increased apoptosis (1.3-fold) and decreased SHH protein (1.1-fold) in the corpora cavernosa. SHH protein is not transported by the CN. Colchicine treatment of the CN resulted in significantly increased smooth muscle apoptosis (1.2-fold) and decreased SHH protein (1.3-fold) in the penis. Lidocaine treatment of the CN caused a similar increase in apoptosis (1.6-fold) and decrease in SHH protein (1.3-fold) in the penis. These results show that neural activity and a trophic factor from the pelvic ganglia/CN are necessary to regulate SHH protein and smooth muscle abundance in the penis.  相似文献   

19.
Sonic hedgehog (Shh), a vertebrate homologue of the Drosophila segment-polarity gene hedgehog, has been reported to play an important role during normal development of various tissues. Abnormal activities of Shh signaling pathway have been implicated in tumorigenesis such as basal cell carcinomas and medulloblastomas. Here we show that Shh signaling negatively regulates prostatic epithelial ductal morphogenesis. In organotypic cultures of developing rat prostates, Shh inhibited cell proliferation and promoted differentiation of luminal epithelial cells. The expression pattern of Shh and its receptors suggests a paracrine mechanism of action. The Shh receptors Ptc1 (Patched1) and Ptc2 were found to be expressed in prostatic stromal cells adjacent to the epithelium, where Shh itself was produced. This paracrine model was confirmed by co-culturing the developing prostate in the presence of stromal cells transfected with a vector expressing a constitutively active form of Smoothened, the real effector of the Shh signaling pathway. Furthermore, expression of activin A and TGF-beta1 that were shown previously to inhibit prostatic epithelial branching was up-regulated following Shh treatment in the organotypic cultures. Taken together, these results suggest that Shh negatively regulates prostatic ductal branching indirectly by acting on the surrounding stromal cells, at least partly via up-regulating expression of activin A and TGF-beta1.  相似文献   

20.
As a basis for understanding the mechanism of erection in an animal model frequently used in research in reproductive biology, the angioarchitecture of the penis of the rat has been described using scanning electron microscopy. Study of the penile vasculature of the rat indicates that the corpora cavernosa penis and the corpus spongiosum are independent erectile tissues, each with its own arterial and venous vessels. The large vascular spaces and abundant smooth muscle of the penile crura are compatible with its role in regulating blood flow to more distal penile tissues. Helicine arteries of the crura, but not the parent deep penile artery or arteries elsewhere, have muscular cushions in their walls. The venous drainage of the penile crura is via subtunical veins which are thought to be compressed during erection to elevate pressure within the penis. Large, paired cavernous veins drain the shaft of the penis. A unique method for inhibiting blood flow from the penis is indicated by the division of the cavernous veins into smaller channels prior to joining the subtunical venous plexus. Erectile tissue in the bifid origins of the corpus spongiosum has abundant cavernous muscle, while in the remainder of the corpus spongiosum little smooth muscle lines the cavernous spaces. The cavernous spaces on either side of the urethra coalesce to form vessels, each of which communicates with cavernous spaces in the glans. In addition, a bypass of the glans is effected by communication of these vessels directly with the deep dorsal vein. The apparent absence of muscular pads in vessels of the spongiosum, the relative paucity of cavernous smooth muscle, and the ample venous drainage provided by the deep dorsal vein may account for the lack of a venous occlusive mechanism similar to that of the corpora cavernosa penis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号