首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gileva EA  Rakitin SB 《Genetika》2006,42(5):620-627
The common vole Microtus arvalis (the form obscurus) exhibits polymorphism of a pericentric inversion in chromosome pair 5 throughout the species range. In the Urals populations, the frequency of an acrocentric variant of the heteromorphic chromosome is very low (on average 3.2%) and virtually does not change annually. The factors of maintaining stable chromosomal polymorphism in the common vole were studied under conditions of a laboratory colony. Heterozygous and homozygous for the acrocentric chromosome females showed a significant reduction of the reproductive output irrespective of the male karyotype. This effect was manifested mostly in litter size at birth. A number of cytogenetic and exophenotypic characteristics, as well as parent--offspring transmission of this chromosome in crosses of various types, were examined. We have found meiotic drive in favor of the acrocentric, as a result of which the frequency of the acrocentric (without taking into account the postnatal mortality) totaled over all cross variants (0.48) was significantly higher than that expected with random segregation (0.42). It is likely that meiotic drive of the acrocentric largely compensates for the reduced fertility of its carriers, being among the factors of maintaining it in natural populations.  相似文献   

2.
The factors maintaining sex chromosome meiotic drive, or sex ratio (SR), in natural populations remain uncertain. Coevolution between segregation distortion and modifiers should produce transient SR distortion while selection can result in a stable polymorphism. We hypothesize that if SR is maintained by selection, then phylogenetically related populations should exhibit similar SR frequency and intensity. Furthermore, when drive is present, females should mate with multiple males more often both to insure fertility and to increase the probability of producing male progeny. In this paper we report on variation in SR frequency and multiple mating among seven populations and three species of stalk-eyed flies, genus Cyrtodiopsis, from southeast Asia. Using a phylogenetic hypothesis based on 1100 bp of mtDNA sequence we find that while sex chromosome meiotic drive is present in all populations of C. whitei and C. dalmanni, the frequency and intensity of drive only differs between populations or species with greater than 4.8% sequence divergence. The frequency of females mating with multiple males is higher in populations with SR. In addition, SR males mate less often, possibly to compensate for sperm depletion. Our results suggest that sex chromosome drive is maintained by balancing selection in populations of C. whitei and C. dalmanni. Nevertheless, coevolution between drive and suppressors deserves further study.  相似文献   

3.
The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260–655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average GST =  0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.  相似文献   

4.
Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo‐sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X‐autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y‐autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo‐sex chromosomes.  相似文献   

5.
Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.  相似文献   

6.
Sex-ratio drive is a particular case of meiotic drive, described in several Drosophila species, that causes males bearing driving X chromosome to produce a large excess of females in their progeny. In Drosophila simulans, driving X chromosomes and resistance factors located on the Y chromosome and on the autosomes have been previously reported. In this paper, we report the study of the dynamics of sex-ratio factors in experimental populations. We followed the evolution in frequency of driving X chromosomes in the absence of resistance factors and the evolution of resistance factors in the presence of driving X chromosomes. The driving X chromosome was lost, contrarily to theoretical expectations that predict its rapid invasion. Autosomal resistances increased in frequency, and resistant Y chromosomes invaded the population very quickly, as predicted by theoretical models. Fitness measurements showed that the loss of the driving X chromosome was due to a strong deleterious effect that was expressed only when distorting males were in competition with standard males. However, the spread of autosomal resistances reduced this deleterious effect. Implications for the maintenance of polymorphism in natural populations are discussed.  相似文献   

7.
We analysed polymorphism for pericentric inversion in chromosome 3 of Oligoryzomys nigripes (Rodentia: Sigmodontinae) in several populations in Brazil and examined the meiotic behaviour of this chromosome in heterozygotes. We observed an orderly pairing of all chromosomes at pachytene in heterozygotes for the inverted chromosome 3. No indication of meiotic arrest and germ-cell death was found. Electron microscopy of synaptonemal complexes and conventional meiotic analysis indicated strictly nonhomologous synapsis and crossing-over suppression in the inverted region in the heterozygotes, which prevent the formation of unbalanced gametes. Thus, the pericentric inversion in chromosome 3 does not apparently result in any selective disadvantages in heterozygous carriers. In the majority of the populations studied, the frequencies of acrocentric homozygotes, metacentric homozygotes, and heterozygotes were in Hardy-Weinberg equilibrium. However, in some populations, we detected an excess of heterozygotes and a deficiency of acrocentric homozygotes.  相似文献   

8.
Like several other species of Drosophila, D. quinaria is polymorphic for X-chromosome meiotic drive; matings involving males that carry a “sex-ratio” X chromosome (XSR) result in the production of strongly female-biased offspring sex ratios (Jaenike 1996). A survey of isofemale lines of D. quinaria from several populations reveals that there is genetic variation for partial suppression of this meiotic drive. Crossing experiments show that there is Y-linked, and probably autosomal, variation for suppression of drive. Y-linked suppressors of X-chromosome drive have now been described in several species of Diptera. I develop a simple model for the maintenance of Y-chromosome polymorphism in species polymorphic for X-linked meiotic drive. One interesting feature of this model is that, if there is a stable Y-chromosome polymorphism, then the equilibrium frequency of the standard and sex-ratio X chromosomes is determined solely by Y-chromosome parameters, not by the fitness effects of the different X chromosomes on their carriers. This model suggests that Y-chromosome polymorphism may be easier to maintain than previously thought, and I hypothesize that karyotypic variation in Y chromosomes will be found to be associated with suppression of sex-ratio meiotic drive in other species of Drosophila.  相似文献   

9.
The captive bred animal populations showing centric fusion polymorphism can serve as a model for analysis of the impact of the rearrangement on meiosis and reproduction. The synapsis of homologous chromosomes and the frequency and distribution of meiotic recombination events were studied in pachytene spermatocytes of captive bred male impalas (Aepyceros melampus) polymorphic for der(14;20) by immunofluorescent analysis and fluorescence in situ hybridization. The chromosomes 14 and 20 involved in the centric fusion were significantly shorter due to the loss of sat I repeats indicating ancient origin of the rearrangement. The fused chromosome and the normal acrocentric chromosomes 14 and 20 formed trivalent in pachynema which showed either protruding proximal ends of the acrocentric chromosomes or single axis with synaptic adjustment in the pericentromeric region. There was no significant difference in the number of recombination events per cell between the group of translocation heterozygotes and the animals with normal karyotype. A significant reduction in the number of recombination events was observed in the trivalent chromosomes compared to the normal chromosomes 14 and 20. The level of the recombination reduction was related to the trivalent configuration. The centric fusion der(14;20) was not apparently demonstrated by any spermatogenic defects or reproductive impairment in heterozygous impalas. However, the high incidence of the chromosomal polymorphism within the captive bred population shows the importance of cytogenetic examinations in captive breeding and wildlife conservation programs, especially in the case of reintroduction of the endangered species.  相似文献   

10.
The sex-ratio trait, known in several species of Drosophila including D. simulans, results from meiotic drive of the X chromosome against the Y. Males that carry a sex-ratio X chromosome produce strongly female-biased progeny. In D. simulans, drive suppressors have evolved on the Y chromosome and on the autosomes. Both the frequency of sex-ratio X and the strength of the total drive suppression (Y-linked and autosomal) vary widely among geographic populations of this worldwide species. We have investigated the pattern of Y-linked drive suppression in six natural populations representative of this variability. Y-linked suppressors were found to be a regular component of the suppression, with large differences between populations in the mean level of suppression. These variations did not correspond to differences in frequency of discrete types of Y chromosomes, but to a more or less wide continuum of phenotypes, from nonsuppressor to partial or total suppressor. We concluded that a large diversity of Y-linked suppressor alleles exists in D. simulans and that some populations are highly polymorphic. Our results support the hypothesis that a Y-chromosome polymorphism can be easily maintained by a balance between meiotic drive and the cost of drive suppression.  相似文献   

11.
The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox) in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy). An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.  相似文献   

12.
Two meiotic genes from natural populations are described. A female meiotic mutation,mei(1)g13, mapped to 17.4 on the X chromosome, causes nondisjunction of all homologs except for the fourth chromosomes. In addition, it reduces recombination by 10% in the homozygotes and causes 18% increased recombination in the heterozygotes. A male meiotic mutation,mei-1223 m144 , is located on the third chromosome. Although this mutation causes nondisjunction of all chromosomes, each chromosome pair exhibits a different nondisjunction frequency. Large variations in the sizes of the premature sperm heads observed in the homozygotes may reflect irregular meiotic pairing and the subsequent abnormal segregation, resulting in aneuploid chromosome complements.  相似文献   

13.
A two-locus model is presented which shows the possibility of maintaining a polymorphism for modifiers of sex-linked meiotic drive in the absence of fitness differences. The model is very similar to the situation actually found in some laboratory strains of the mosquito Aedes aegypti. The existence of a stable polymorphism usually requires sufficiently loose linkage between the two loci.  相似文献   

14.
Meiotic drivers have been proposed as a potent evolutionary force underlying genetic and phenotypic variation, genome structure, and also speciation. Due to their strong selective advantage, they are expected to rapidly spread through a population despite potentially detrimental effects on organismal fitness. Once fixed, autosomal drivers are cryptic within populations and only become visible in between‐population crosses lacking the driver or corresponding suppressor. However, the assumed ubiquity of meiotic drivers has rarely been assessed in crosses between populations or species. Here we test for meiotic drive in hybrid embryos and offspring of Timor and Australian zebra finches—subspecies that have evolved in isolation for about two million years—using 38,541 informative transmissions of 56 markers linked to either centromeres or distal chromosome ends. We did not find evidence for meiotic driver loci on specific chromosomes. However, we observed a weak overall transmission bias toward Timor alleles at centromeres in females (transmission probability of Australian alleles of 47%, nominal p = 6 × 10–5). While this is in line with the centromere drive theory, it goes against the expectation that the subspecies with the larger effective population size (i.e., the Australian zebra finch) should have evolved the more potent meiotic drivers. We thus caution against interpreting our finding as definite evidence for centromeric drive. Yet, weak centromeric meiotic drivers may be more common than generally anticipated and we encourage further studies that are designed to detect also small effect meiotic drivers.  相似文献   

15.
The experimental population genetics of Y-chromosome drive in Drosophila melanogaster is approximated by studying the behavior of T(Y;2),SD lines. These exhibit "pseudo-Y" drive through the effective coupling of the Y chromosome to the second chromosome meiotic drive locus, Segregation distorter (SD). T(Y;2),SD males consequently produce only male offspring. When such lines are allowed to compete against structurally normal SD+ flies in population cages, T(Y;2),SD males increase in frequency according to the dynamics of a simple haploid selection model until the cage population is eliminated as a result of a deficiency in the number of adult females. Cage population extinction generally occurs within about seven generations.—Several conclusions can be drawn from these competition cage studies:

(1) Fitness estimates for the T(Y;2),SD lines (relative to SD+ ) are generally in the range of 2–4, and these values are corroborated by independent estimates derived from studies of migration-selection equilibrium.

(2) Fitness estimates are unaffected by cage replication, sample time, or the starting frequency of T(Y;2),SD males, indicating that data from diverse cages can be legitimately pooled to give an overall fitness estimate.

(3) Partitioning of the T(Y;2),SD fitnesses into components of viability, fertility, and frequency of alternate segregation (Y + SD from X + SD+) suggests that most of the T(Y;2),SD advantage derives from the latter two components. Improvements in the system might involve increasing both the viability and the alternate segregation to increase the total fitness.

While pseudo-Y drive operates quite effectively against laboratory stocks, it is less successful in eliminating wild-type populations which are already segregating for suppressors of SD action. This observation suggests that further studies into the origin and rate of accumulation of suppressors of meiotic drive are needed before an overall assessment can be made of the potential of Y-chromosome drive as a tool for population control.

  相似文献   

16.

The deviation of alleles and chromosomes from Mendelian inheritance is characteristic of the meiotic drive. This review describes the mechanism in question using the best-studied example of transmitted ratio distortion in the heterozygous male mice carrying t-haplotypes. The t-complex is best model for studying the meiotic drive under laboratory conditions. Putative mechanisms of meiotic drive that influence the frequency of t-haplotypes in natural populations are considered, of which prezygotic selection is the most important. The role of meiotic drive in male hybrid sterility is emphasized. The factors and models that determine the phenomenon of meiotic drive are discussed in detail.

  相似文献   

17.
Chromosome analysis of 53 specimens from a population of Gobius fallax has revealed inter- and intra-individual variation in the diploid number (2n=38–43) arising mainly through Robertsonian translocations. The presence of a small biarmed chromosome in a few cells from 3 males as well as the numerous multivalent configurations in meiotic plates and the apparent association between the NOR-chromosomes and other acrocentrics suggest that this polymorphism has an inherited as well as a somatic origin and that some translocations may involve more than two acrocentric pairs simultaneously.  相似文献   

18.
Andrew G. Clark 《Genetics》1987,115(1):143-151
Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.  相似文献   

19.
Meiotic drive elements are a special class of evolutionarily “selfish genes” that subvert Mendelian segregation to gain preferential transmission at the expense of homologous loci. Many drive elements appear to be maintained in populations as stable polymorphisms, their equilibrium frequencies determined by the balance between drive (increasing frequency) and selection (decreasing frequency). Here we show that a classic, seemingly balanced, drive system is instead characterized by frequent evolutionary turnover giving rise to dynamic, rather than stable, equilibrium frequencies. The autosomal Segregation Distorter (SD) system of the fruit fly Drosophila melanogaster is a selfish coadapted meiotic drive gene complex in which the major driver corresponds to a partial duplication of the gene Ran‐GTPase activating protein (RanGAP). SD chromosomes segregate at similar, low frequencies of 1–5% in natural populations worldwide, consistent with a balanced polymorphism. Surprisingly, our population genetic analyses reveal evidence for parallel, independent selective sweeps of different SD chromosomes in populations on different continents. These findings suggest that, rather than persisting at a single stable equilibrium, SD chromosomes turn over frequently within populations.  相似文献   

20.
The sex-ratio trait we describe here in Drosophila simulans results from X-linked meiotic drive. Males bearing a driving X chromosome can produce a large excess of females (about 90%) in their progeny. This is, however, rarely the case in the wild, where resistance factors, including autosomal suppressors and insensitive Y chromosomes, prevent the expression of the driver. In this study, we searched for drive and resistance factors in strains of Drosophila simulans collected all over the world. Driving X chromosomes were found in all populations whenever a good sample size was available. Their frequency may reach up to 60%. However, the presence of driving X chromosomes never results in an excess of females, due to the systematic co-occurrence of resistance factors. The highest frequencies of driving X chromosomes were observed in islands, while populations from East and Central Africa (the supposed center of origin of the species) showed the highest level of resistance. The geographical pattern of drive and resistance factors, as well as the results of crosses between strains from different geographical areas, suggest that the sex-ratio system described here has a unique and ancient origin in the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号