首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ability of human skeletal muscle to provide anaerobically derived ATP during short-term, intense activity is examined. The paper emphasizes the information obtained from direct measurements of substrates, intermediates, and products of the pathways in muscle that provide anaerobically derived ATP. The capacity of muscle to provide ATP via anaerobic pathways is approximately 370 mmol/kg dry muscle (dm) during dynamic exercise lasting approximately 3 min. Anaerobic glycolysis provided approximately 80%, phosphocreatine (PCr) degradation approximately 16%, and depletion of the ATP store approximately 4% of the total ATP provided. When the blood flow to the working muscles is reduced or occluded, the anaerobic capacity decreases to approximately 300 mmol/kg dm. This reduction is due to a lower glycolytic capacity associated with an inability to remove lactate from the muscles. Directly measured maximal rates of anaerobically derived ATP provision from PCr degradation and glycolysis during intense muscular activity are each approximately 9-10 mmol.kg-1 dm.s-1. Evidence suggests that both of these pathways are activated instantaneously at the onset of maximal activity. Spring training does little to the capacity or rates of the pathways, although a 10-20% increase in glycolytic ATP provision has been reported. The only study comparing direct and indirect estimates of the anaerobic capacity in humans suggests that O2 deficit measured at the mouth accurately predicts the anaerobic capacity of a single muscle group and that O2 debt does not. There are many unresolved issues regarding the capacity of the PCr and glycogenolytic--glycolytic systems to provide ATP during short-term intense muscular activity in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Glycolytic flux may increase over 100 times in skeletal muscle during rest-to-work transition, whereas glycolytic metabolite concentrations remain relatively constant. This constancy cannot be explained by an identical direct activation of all glycolytic enzymes because the concentrations of ATP, ADP, AMP, P(i), NADH and NAD+, modulators of the activity of different glycolytic enzymes, change. It is demonstrated in the present in silico study that a perfect homeostasis of glycolytic metabolite concentrations can be achieved if glycolysis is divided into appropriate blocks of enzymes that are directly activated to a different extent in order to compensate the effect of the modulators.  相似文献   

3.
4.
We examined the regulation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in white muscle of rainbow trout during a continuous bout of high-intensity exercise that led to exhaustion in 52 s. The first 10 s of exercise were supported by creatine phosphate hydrolysis and glycolytic flux from an elevated glycogenolytic flux and yielded a total ATP turnover of 3.7 micromol x g wet tissue(-1) x s(-1). The high glycolytic flux was achieved by a large transformation of Phos into its active form. Exercise performed from 10 s to exhaustion was at a lower ATP turnover rate (0.5 to 1.2 micromol x g wet tissue(-1) x s(-1)) and therefore at a lower power output. The lower ATP turnover was supported primarily by glycolysis and was reduced because of posttransformational inhibition of Phos by glucose 6-phosphate accumulation. During exercise, there was a gradual activation of PDH, which was fully transformed into its active form by 30 s of exercise. Oxidative phosphorylation, from PDH activation, only contributed 2% to the total ATP turnover, and there was no significant activation of lipid oxidation. The time course of PDH activation was closely associated with an increase in estimated mitochondrial redox (NAD(+)-to-NADH concentration ratio), suggesting that O2 was not limiting during high-intensity exercise. Thus anaerobiosis may not be responsible for lactate production in trout white muscle during high-intensity exercise.  相似文献   

5.
6.
In silico studies carried out by using a computer model of oxidative phosphorylation and anaerobic glycolysis in skeletal muscle demonstrated that deamination of AMP to IMP during heavy short term exercise and/or hypoxia lessens the acidification of myocytes. The concerted action of adenylate kinase and AMP deaminase, leading to a decrease in the total adenine nucleotide pool, constitutes an additional process consuming ADP and producing ATP. It diminishes the amount of ADP that must be converted to ATP by other processes in order to meet the rate of ADP production by ATPases (because the adenylate kinase + AMP deaminase system produces only 1 ATP per 2 ADPs used, ATP consumption is not matched by ATP production, and the reduction of the total adenine nucleotide pool occurs mostly at the cost of [ATP]). As a result, the rate of ADP consumption by other processes may be lowered. This effect concerns mostly ADP consumption by anaerobic glycolysis that is inhibited by AMP deamination-induced decrease in [ADP] and [AMP], and not oxidative phosphorylation, because during heavy exercise and/or hypoxia [ADP] is significantly greater than the Km value of this process for ADP. The resultant reduction of proton production by anaerobic glycolysis enables us to delay the termination of exercise because of fatigue and/or to diminish cell damage.  相似文献   

7.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

8.
Human muscle metabolism during sprint running   总被引:8,自引:0,他引:8  
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.  相似文献   

9.
In a treatment modeled after the oscillatory behavior of the glycolytic pathway and the purine nucleotide cycle observed in skeletal muscle extracts, it is shown that the basis of the oscillations is the AMP-dependent activation of phosphofructokinase by fructose diphosphate. Control of phosphofructokinase by the adenine nucleotides alone leads to the establishment of a steady state. Whether steady state or oscillatory behavior occurs depends in part on the activity of glyceraldehyde-3-phosphate dehydrogenase, which controls the rate of removal of fructose diphosphate. Under appropriate conditions oscillatory behavior can maintain a higher [ATP]/[ADP] ratio than steady state behavior. Viewed in the context of conditions that may be encountered in skeletal muscle in vivo, oscillatory behavior of glycolysis is shown to have additional advantages for maintaining a high [ATP]/[ADP] ratio.  相似文献   

10.
Previous studies have suggested the recovery of phosphocreatine (PCr) after exercise is at least second-order in some conditions. Possible explanations for higher-order PCr recovery kinetics include heterogeneity of oxidative capacity among skeletal muscle fibers and ATP production via glycolysis contributing to PCr resynthesis. Ten human subjects (28 +/- 3 yr; mean +/- SE) performed gated plantar flexion exercise bouts consisting of one contraction every 3 s for 90 s (low-intensity) and three contractions every 3 s for 30 s (high-intensity). In a parallel gated study, the sciatic nerve of 15 adult male Sprague-Dawley rats was electrically stimulated at 0.75 Hz for 5.7 min (low intensity) or 5 Hz for 2.1 min (high intensity) to produce isometric contractions of the posterior hindlimb muscles. [(31)P]-MRS was used to measure relative [PCr] changes, and nonnegative least-squares analysis was utilized to resolve the number and magnitude of exponential components of PCr recovery. Following low-intensity exercise, PCr recovered in a monoexponential pattern in humans, but a higher-order pattern was typically observed in rats. Following high-intensity exercise, higher-order PCr recovery kinetics were observed in both humans and rats with an initial fast component (tau < 15 s) resolved in the majority of humans (6/10) and rats (5/8). These findings suggest that heterogeneity of oxidative capacity among skeletal muscle fibers contributes to a higher-order pattern of PCr recovery in rat hindlimb muscles but not in human triceps surae muscles. In addition, the observation of a fast component following high-intensity exercise is consistent with the notion that glycolytic ATP production contributes to PCr resynthesis during the initial stage of recovery.  相似文献   

11.
The cytoplasmic NADH/NAD redox potential affects energy metabolism and contractile reactivity of vascular smooth muscle. NADH/NAD redox state in the cytosol is predominately determined by glycolysis, which in smooth muscle is separated into two functionally independent cytoplasmic compartments, one of which fuels the activity of Na(+)-K(+)-ATPase. We examined the effect of varying the glycolytic compartments on cystosolic NADH/NAD redox state. Inhibition of Na(+)-K(+)-ATPase by 10 microM ouabain resulted in decreased glycolysis and lactate production. Despite this, intracellular concentrations of the glycolytic metabolite redox couples of lactate/pyruvate and glycerol-3-phosphate/dihydroxyacetone phosphate (thus NADH/NAD) and the cytoplasmic redox state were unchanged. The constant concentration of the metabolite redox couples and redox potential was attributed to 1) decreased efflux of lactate and pyruvate due to decreased activity of monocarboxylate B-H(+) transporter secondary to decreased availability of H(+) for cotransport and 2) increased uptake of lactate (and perhaps pyruvate) from the extracellular space, probably mediated by the monocarboxylate-H(+) transporter, which was specifically linked to reduced activity of Na(+)-K(+)-ATPase. We concluded that redox potentials of the two glycolytic compartments of the cytosol maintain equilibrium and that the cytoplasmic NADH/NAD redox potential remains constant in the steady state despite varying glycolytic flux in the cytosolic compartment for Na(+)-K(+)-ATPase.  相似文献   

12.
Sahlin K  Harris RC 《Amino acids》2011,40(5):1363-1367
The classical role of PCr is seen as a reservoir of high-energy phosphates defending cellular ATP levels under anaerobic conditions, high rates of energy transfer or rapid fluctuations in energy requirement. Although the high concentration of PCr in glycolytic fast-twitch fibers supports the role of PCr as a buffer of ATP, the primary importance of the creatine kinase (CK) reaction may in fact be to counteract large increases in ADP, which could otherwise inhibit cellular ATPase-mediated systems. A primary role for CK in the maintenance of ADP homeostasis may explain why, in many conditions, there is an inverse relationship between PCr and muscle contractility but not between ATP and muscle contractility. The high rate of ATP hydrolysis during muscle contraction combined with restricted diffusion of ADP suggests that ADP concentration increases transiently during the contraction phase (ADP spikes) and that these are synchronized with the contraction. The presence of CK, structurally bound in close vicinity to the sites of ATP utilization, will reduce the amplitude and duration of the ADP spikes through PCr-mediated phosphotransfer. When PCr is reduced, the efficiency of CK as an ATP buffer will be reduced and the changes in ADP will become more prominent. The presence of ADP spikes is supported by the finding that other processes known to be activated by ADP (i.e. AMP deamination and glycolysis) are stimulated during exercise but not during anoxia, despite the same low global energy state. Breakdown of PCr is driven by increases in ADP above that depicted by the CK equilibrium and the current method to calculate ADPfree from the CK reaction in a contracting muscle is therefore questionable.  相似文献   

13.
Female Sprague-Dawley rats (250 g) were hindlimb suspended for 14 days, and the effects of hindlimb unweighting (HU) on skeletal muscle anaerobic metabolism were investigated and compared with nonsuspended controls (C). Soleus (SOL), plantaris (PL), and red and white portions of the gastrocnemius (RG, WG) were sampled from resting and stimulated limbs. Muscle atrophy after HU was 46% in SOL, 22% in PL, and 24% in the gastrocnemius compared with nonsuspended C animals. The muscles innervated by the sciatic nerve were stimulated to contract with an occluded circulation for 60 s with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1.0 Hz. Peak tension development by the gastrocnemius-PL-SOL muscle group was similar in HU and C animals (13.0 +/- 1.2, 12.2 +/- 0.8 N/g wet muscle). Occlusion of the circulation before stimulation created a predominantly anaerobic environment, and in situ glycogenolysis and glycolysis were estimated from accumulations of glycolytic intermediates. Total glycogenolysis and glycolysis were higher in the RG muscle of HU animals (74.6 +/- 3.3, 58.1 +/- 1.1) relative to C (57.1 +/- 4.6, 46.1 +/- 2.9 mumol glucosyl units/g dry muscle). Consequently, total anaerobic ATP production was also increased (HU, 251.3 +/- 1.1; C, 204.6 +/- 8.9 mumol ATP/g dry muscle). Total ATP production, glycogenolysis, and glycolysis were unaffected by HU in SOL, PL, and WG muscles. The enhanced glycolytic activity in RG after HU may be attributed to a shift in the metabolic profile from oxidative to glycolytic in the fast oxidative-glycolytic fiber population.  相似文献   

14.
The oxygen deficit at the onset of submaximal exercise represents a period when the energy demand of contraction cannot be met solely by mitochondrial ATP generation, and as a consequence there is an acceleration of ATP re-synthesis from oxygen-independent routes (phosphocreatine hydrolysis and glycolysis). Historically, the origin of the oxygen deficit has been attributed to a lag in muscle blood flow and oxygen availability at the onset of exercise which limits mitochondrial respiration. However, more recent evidence suggests that considerable inertia exists at the level of mitochondrial enzyme activation and substrate supply. In support of this latter hypothesis, we have reported on a number of occasions that pharmacological activation of the pyruvate dehydrogenase complex (and consequent stockpiling of acetyl groups), using dichloroacetate or exercise interventions, can markedly reduce the degree of ATP re-synthesis from oxygen-independent routes during the rest-to-work transition period. This review will focus on these findings, and will offer the hypothesis that acetyl group delivery to the tricarboxylic acid cycle limits mitochondrial flux at the onset of exercise--the so-called acetyl group deficit.  相似文献   

15.
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.  相似文献   

16.
Adenosine deaminase activity was shown to decrease in each skeletal muscle type (the slow-twitch oxydative, fast-twitch oxydative--glycolytic and fast-twitch glycolytic) at the beginning of exercise of moderate intensity and to return to the control when exercise was continued till exhaustion. 5 min occlusion of the femoral artery had no effect on the enzyme activity in either muscle. The reduction of the enzyme activity at the onset of exercise could result in reduction of adenosine breakdown and thus contribute to vasodilation at this stage of increased contractile activity of the muscles.  相似文献   

17.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

18.
Summary Concentrations of glycolytic intermediates, lactate, adenine nucleotides, inorganic phosphate, phosphoarginine and citrate have been estimated after various periods of valve closure (Table 1 and Fig. 1). Mass action ratios of enzyme steps involved in the metabolism of these components are compared with their equilibrium constants. This reveals glycogen phosphorylase, phosphofructokinase, hexosediphosphatase and pyruvate kinase catalyze non-equilibrium reactions. The first three enzymes possess relatively low activities (Table 2).From the changes in concentrations of the glycolytic intermediates it is concluded that phosphofructokinase controls the carbon flow during the first hours after valve closure, whereas later on the rate of conversion of phosphoenolpyruvate is determining this flow. In skeletal muscle phosphofructokinase controls the carbon flow during the whole period of exercise.The concentrations of ADP, AMP and inorganic phosphate increase, whereas the concentrations of ATP, phosphoarginine and citrate decrease during valve closure (Table 1 and Fig. 2). In contrast to skeletal muscle, these changes do not result in a strong increase in the glycolytic flux.There is a much greater potential for ATP hydrolysis by the myofibrillar ATPase system than is actually realized by the adductor muscle during valve closure.  相似文献   

19.
The AMP-activated protein kinase (AMPK) plays a key role in the regulation of energy metabolism in eukaryotic cells acting as a metabolic sensor. In its activated form AMPK inhibits ATP consuming pathways and stimulates ATP generating pathways. A dominant mutation, denoted RN(-), in the porcine PRKAG3 gene, encoding the regulatory gamma3 subunit of AMPK, results in hyperaccumulation of glycogen in glycolytic skeletal muscle cells. To study the effects of this mutation on protein expression patterns in skeletal muscle, comparative proteome analysis of muscle samples from 12 animals (6 rn (+)/rn (+) and 6 RN(-)/rn (+)) was performed. The major finding of the proteome analysis was that the key enzyme in the synthesis of glycogen, UDP-glucose pyrophosphorylase, was significantly up-regulated in RN(-) carriers. This observation was subsequently supported by studies of enzyme activity and Northern blot analysis. Furthermore, the expression patterns of enzymes related to glycolysis and the citric acid cycle were also affected. Our data suggests that hyperaccumulation of glycogen mediated by the RN(-) mutation is due to an increased synthesis of glycogen.  相似文献   

20.
The temperature (T)-dependence of energy consumption of resting anaerobic frog gastrocnemii exposed to different, changing electrochemical gradients was assessed. To this aim, the rate of ATP resynthesis (delta approximately P/deltat) was determined by (31)P- and (1)H-MRS as the sum of the rates of PCr hydrolysis (delta[PCr]/deltat) and of anaerobic glycolysis (delta[La]/ deltat, based on a approximately P/La ratio of 1.5). The investigated T levels were 15, 20 and 25 degrees C, whereas initial extracellular pH (pHe) values were 7.9, 7.3 and 7.0, i.e. higher, equal or lower, respectively, than intracellular pH (pHi). The latter was changing with T according to the neutrality point (dpH/dT=-0.0165 pH units/ degrees C). Both rates of PCr hydrolysis and of lactate accumulation and that of their sum, expressed as delta approximately P/deltat, were highly T-dependent. By contrast, the pHe-dependence of the muscle energy balance was nil or extremely limited at 15 and 20 degrees C, respectively, but remarkable at 25 degrees C (with a depression of the ATP resynthesis rate up to 25% with a decrease of pHe from 7.9 to 7.0). The pHe-dependent reduction of metabolic rate was associated with a down-regulation of anaerobic glycolysis due to reduced activity of ion-transporters controlling acid-base balance and/or to a shift from Na(+)/H(+) to a more efficient Na(+)-dependent Cl(-)/HCO(3)(-) exchanger. Uncoupling of glycogenolysis from P-metabolite concentrations, both as function of T (>or=20 degrees C) and of pHe (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号