首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphorylation was examined in cytosolic extracts of adult rat anterior pituitary. In the presence of both cyclic AMP and calmodulin, the phosphorylation of a Mr 22,000 protein was markedly stimulated. Cyclic AMP and calmodulin must both be present in order for this effect to be observed; cyclic GMP does not substitute for cyclic AMP, and the effect is abolished by either trifluoperazine or the heat-stable inhibitor of cyclic AMP-dependent protein kinase. Two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that there are three molecular species of the Mr 22,000 phosphoprotein, with pI values ranging from 6.8 to 8.1. Phosphorylation of this protein is maximally stimulated by 5 microM cyclic AMP and 5.7 microM calmodulin. The effect of cyclic AMP plus calmodulin is enhanced by preincubation and requires a divalent cation; maximal phosphorylation takes place at 100 microM Mn2+, although higher concentrations of Mg2+ and Co2+ support an equivalent degree of phosphorylation. Cyclic AMP plus calmodulin-dependent protein phosphorylation was not detected in other rat tissues surveyed, including brain, testes, adrenal, kidney, liver, spleen, skeletal muscle, pineal, or posterior pituitary. These results help to explain the previous findings of Brattin and Portanova (Brattin, W.J., Jr., and Portanova, R. (1981) Mol. Cell. Endocr. 23, 77-90) of in vivo but not in vitro phosphorylation of three Mr 20,000 anterior pituitary proteins and indicate a possible point of convergence for calcium and cyclic AMP actions in the anterior pituitary.  相似文献   

2.
The influence of cyclic AMP on the metabolism of phosphatidylcholine, the major component of pulmonary surfactant was examined in a cell line (A549) with type 2 pneumonocyte characteristics. It was found that cyclic AMP increased both the total amount of phosphatidylcholine and disaturated phosphatidylcholine as well as the incorporation of [3H]choline into these fractions. The effect was specific for cyclic AMP since 5'-AMP, adenosine, and cyclic GMP did not alter phosphatidylcholine or disaturated phosphatidylcholine levels. Cyclic AMP had no effect on phosphatidylcholine and disaturated phosphatidylcholine metabolism in another non-type 2 human epithelial cell line (MA-160). Since the ability of various cyclic AMP analogs to increase phosphatidylcholine and disaturated phosphatidylcholine levels was correlated with their ability to activate protein kinase, it seems likely that a protein phosphorylation mechanism is involved in controlling phosphatidylcholine metabolism.  相似文献   

3.
Brain and liver cytosol extracts from mice of different ages were incubated with (γ-32P)ATP. The phosphorylated substrates were separated by gel electrophoresis and examined by autoradiography. The amount of P32 that could be incorporated into a 49,000 M.W. protein (called protein 49) postnatally increased in brain but decreased in liver. Cyclic AMP stimulated both the phosphorylation and dephosphorylation of liver protein 49 to a greater extent in adults than in neonates. Brain protein 49 phosphorylation was more sensitive to cyclic AMP in neonates than in adults.  相似文献   

4.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

5.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

6.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

7.
A cyclic AMP phosphodiesterase form of rat brain cytosol was purified by means of affinity chromatography on an immobilized analog of the specific inhibitor rolipram, followed by an exclusion chromatography step. The resulting preparation presented two protein bands in polyacrylamide gel electrophoresis, both with phosphodiesterase activity. Kinetics of cyclic AMP hydrolysis by the purified enzyme proved of the Michaelis type, with a Km of 3 microM, while hydrolysis of cyclic GMP displayed anomalous negatively cooperative kinetics. At micromolar concentrations, this enzyme from hydrolyzed highly specifically cyclic AMP (50-fold faster than cyclic GMP). Cyclic GMP proved a poor competitor of cyclic AMP hydrolysis (Ki 1.04 mM). The neurotropic compound, rolipram, strongly inhibited the enzyme, in a competitive manner (Ki 0.9 microM). This enzyme displayed a molecular mass of around 44 kDa as determined by exclusion chromatography, but two molecular masses of 42 kDa and 89 kDa were observable by electrophoresis on a polyacrylamide gradient gel, compatible with an equilibrium between dimeric and monomeric forms. Isoelectric focusing of the preparation gave rise to two activity peaks of pI 4.8 and 6.7, with identical properties, probably representing two charge isomers of the same protein. An enzyme prepared from rat heart cytosol by the same techniques as for brain phosphodiesterase isolation shared numerous characteristics with the enzyme of cerebral origin, suggesting identity of the rolipram-sensitive form between the two tissues. Since the rolipram-sensitive form detected in crude brain preparations markedly differs from the above-described isolated enzyme, both by its molecular mass in exclusion chromatography and by its pI, it is suggested that an alteration of the native protein, due to dissociation of putative subunits, occurs during the purification procedure.  相似文献   

8.
This study on the phosphorylation in vivo of membrane proteins in cerebral cortices of infant rats reports the identification of the adrenocorticotropin (ACTH)-sensitive phosphoprotein B-50 as one of the substrate proteins that are rapidly phosphorylated in vivo following intracisternal administration of 2 mCi [32P]orthophosphate. Rats were sacrificed 30 min after isotope injection. A fraction enriched in membranes, designated neural membranes (NM), was isolated from the cerebral cortices according to the procedure used for preparation of synaptic plasma membranes (SPM) from adult brain. This NM fraction was characterized by electron microscopy. The proteins of NM were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Numerous protein bands of NM in infant rat brain were phosphorylated in vivo. Attention was focussed on the 32P-labeled protein bands in the molecular weight range of 47K-67K. In this region one phosphoprotein band (MW 48K) was more highly labeled than the other bands. The electrophoretic behavior of three of these labeled bands, designated a, c, and e (MW 48K, 55K, and 62K, respectively) was compared with that of protein bands that were phosphorylated in vitro in cerebral membranes isolated from noninjected infant rats. The effects of ACTH1-24 and cyclic AMP in the in vitro system were also studied to probe for the presence of specific membrane proteins known to be sensitive to these modulators. On incubation of NM with [gamma-32P)ATP in the presence and absence of ACTH1-24 in vitro, phosphorylation of a 48K protein band was inhibited in a dose-dependent fashion by the neuropeptide. Two-dimensional electrophoretic separation of NM proteins labeled in vivo indicated that the 48K band had an isoelectric point of 4.5, identical to that of the ACTH-sensitive B-50 protein previously identified. Cyclic AMP stimulated phosphorylation in vitro of two protein bands (MW 55K and 59K) in NM preparations. This result indicates that the in vivo labeled band c may correspond to the cyclic AMP-sensitive 55K protein, whereas phosphoprotein band e, labeled in vivo, appears to be different from the cyclic AMP-sensitive 59K protein band. These observations indicate that neural membranes isolated from infant rat cerebral cortices contain a variety of proteins that can be phosphorylated in vivo. Several of these, for example, the 48K protein band, have the properties of synaptic plasma membrane proteins of adult rat brain that have been characterized by their sensitivity to neuromodulators in endogenous phosphorylating systems in vitro.  相似文献   

9.
A highly purified adenosine 3′,5′-monophosphate-dependent protein kinase from bovine brain has been found to catalyze its own phosphorylation. The incorporated phosphate was shown to be associated with the cyclic AMP-binding subunit (R-protein) of the protein kinase. The catalytic subunit exhibited no detectable incorporation of phosphate into itself, but was required for the phosphorylation of R-protein. The molecular weight of R-protein was determined by polyacrylamide gel electrophoresis to be about 48,000 in the presence of sodium dodecyl sulfate. Cyclic AMP strikingly inhibited the rate of autophosphorylation observed in the presence of ZnCl2, CaCl2, NiCl2, or FeCl2, but had no significant effect in the presence of MgCl2 or CoCl2. The concentration of cyclic AMP required to give half-maximal inhibition of phosphorylation was 3 × 10?7m in the presence of either CaCl2 or ZnCl2. Guanosine 3′,5′-monophosphate was far less effective under the same experimental conditions than cyclic AMP. R-protein appears to be similar to a phosphoprotein recently discovered in synaptic membrane fractions from rat and bovine cerebral cortex.  相似文献   

10.
A protein kinase that catalyzes the phosphorylation of histone was partially purified from rat thymus, and the rate of histone phosphorylation was stimulated three- to fourfold by 1 × 10?6 M adenosine 3′,5′-monophosphate (cyclic AMP). Thymic protein kinase was more active than the enzyme from spleen. Histone fractions f1, f2a, f2b, and f3 were all capable of serving as phosphate acceptors for the thymic protein kinase, and the rate of phosphorylation of each fraction was stimulated by cyclic AMP. The ability of various 3′,5′-mononucleotides to stimulate protein kinase activity was compared. Inosine 3′,5′-monophosphate (cyclic IMP) was the most effective substitute for cyclic AMP. The cellular distribution of cyclic AMP-dependent protein kinase and adenylate cyclase activities in the thymus was determined. Cyclic AMP-dependent protein kinase activity is present in both small thymocytes and residual thymic tissue. The specific activity of protein kinase from residual tissue, both for basal and cyclic AMP-stimulated enzyme, was greater than that of enzyme from small thymocytes. In contrast to this, adenylate cyclase activity is predominately localized in the thymocytes.  相似文献   

11.
The dependence of cell proliferation on nuclear protein phosphorylation was studied with exponential-phase and stationary-phase cultures of Chinese-hamster ovary cells. Nuclear proteins were fractionated, according to their DNA-binding affinities, by using sequential extractions of isolated nuclei with increasing concentrations of NaCl. When viable whole cells were labelled with H332PO4, phosphorylation of nuclear proteins was found to be lower in quiescent cells than in proliferating cells. Phosphorylation of nuclear proteins soluble in 0.30M-NaCl (less than 50% of these proteins bind to DNA) was greater than for those proteins soluble in higher salt concentrations (80-100% of these proteins bind to DNA). Cyclic AMP enhanced the phosphorylation of nuclear proteins soluble in 0.3 m-NaCl by 40-50%, and this stimulation was independent of cell growth. Cyclic AMP also increased the phosphorylation of nuclear proteins soluble in 0.6M-NaCl and 2.0M-NaCl by 40-50% in exponential-phase cultures, but not in stationary-phase cultures. Several examples of specific phosphorylation in response to cyclic AMP were observed, including a 35000-mol.wt. protein in the 0.30 M-NaCl-soluble fraction and several proteins larger than 100000 molecular weight within this fraction. A major peptide of molecular weight approx. 31000 extracted with 0.6M-NaCl was also phosphorylated. Its phosphorylation was independent of cyclic AMP in exponential-phase cultures, and it was not phosphorylated in plateau-phase cells. These changes in cell-growth-dependent phosphorylation occurred in the absence of any apparent qualitative changes in the nuclear protein molecular-weight distributions. These data demonstrate that (1) phosphorylation of nuclear proteins is dependent on the culture's proliferative status, (2) both cyclic AMP-dependent and cyclic AMP-independent specific phosphorylation occurs, and (3) the cyclic AMP-dependent growth-independent phosphorylation that occurs does not appear to be a modification of DNA-binding proteins, whereas the cyclic AMP-dependent growth-dependent phosphorylation does involve modification of DNA binding proteins.  相似文献   

12.
Filamin is a high molecular weight actin-binding protein found in large quantities in smooth muscle and other non-muscle cells. We have studied the phosphorylation of filamin in a mammalian smooth muscle, the guinea pig vas deferens. Intact vas deferens incorporated [32P]orthophosphate into filamin. Incubation of particulate fractions of vas deferens with [gamma-32P]ATP resulted in 32P-labeling of filamin. Cyclic AMP stimulated this phosphorylation, whereas cyclic GMP and Ca2+ had no effect. Purified vas deferens filamin can be phosphorylated by purified cyclic AMP-dependent protein kinase. We have compared cyclic AMP and cyclic GMP effects on phosphorylation in smooth muscle. Cyclic GMP stimulated phosphorylation of two particulate proteins, G-I (Mr = 130,000) a protein previously described by Casnellie, J. E., and Greengard, P. (1974) Proc. Natl. Acad, Sci. U.S.A. 71, 1891-1895 and G-III (Mr = 240,000). Both proteins and the kinase responsible for their phosphorylation appear to be membrane-bound. Phosphorylation of both proteins is stimulated by cyclic GMP (Ka = 3 x 10(-8) M), cyclic AMP (Ka = 3 x 10(-7) M), and to a lesser degree by Ca2+. In contrast, filamin phosphorylation is due to a soluble kinase stimulated only by cyclic AMP (Ka = 3 x 10(-7) M) and not by cyclic GMP or Ca2+.  相似文献   

13.
Studies were carried out to elucidate the mechanisms underlying the diminished phosphorylation of cerebral ribosomal protein in experimental hyperphenylalaninaemia [Roberts & Morelos (1980) Biochem. J.190, 405-419]. Administration of N(6),O(2)'-dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine, which increased phosphorylation of the S6 protein of cerebral 40S ribosomal subunits in control infant rats, did not counteract the decreased phosphorylation of this ribosomal protein resulting from intraperitoneal administration of a loading dose of l-phenylalanine. N(2),O(2)'-Dibutyryl cyclic GMP had no effect on cerebral ribosomal-protein phosphorylation in either control or hyperphenylalaninaemic animals. The phenylalanine-induced decrease in ribosomal-protein phosphorylation was associated with decreased protein kinase activity in cerebral cytosolic and microsomal preparations. However, the maximal protein kinase response to cyclic AMP added in vitro was unaltered by prior administration of phenylalanine in vivo. The heat-stable protein inhibitor of cyclic AMP-dependent protein kinases decreased the activity of these enzymes by about 90% and eliminated the phenylalanine-induced difference in protein kinase activity in the absence of added cyclic AMP. Intracisternal administration of doses of dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine which increased the cyclic AMP-dependent protein kinase activity ratio in control infant rats was without effect on this index in phenylalanine-treated animals. Dibutyryl cyclic GMP had no effect on the protein kinase activity ratio in either group of animals. These results suggest that inhibition of cerebral cyclic AMP-dependent protein kinases by abnormally high concentrations of phenylalanine may contribute to the decrease in cerebral ribosomal-protein phosphorylation in experimental hyperphenylalaninaemia.  相似文献   

14.
A phosphorylated regulatory subunit of cyclic AMP-dependent protein kinase (type II) was purified to homogeneity from inorganic [32P]phosphate-injected rats. A new method of measuring the phosphorylation reaction was developed. It was found that this regulatory subunit was phosphorylated in cells and comprised 60, 82 and 55% of the total regulatory subunit in brain, heart and liver cytosol fractions from rats, respectively. Dephosphorylation was stimuated by cyclic nucleotides. The Ka values for cyclic AMP and cyclic IMP were 0.30 and 1.0 microM, respectively. Purified phosphoprotein phosphatase could dephosphorylate the regulatory subunit and this reaction was also stimulated by cyclic nucleotides with similar Ka values. The inhibitors of phosphoprotein phosphatase, NaF and ZnCl2, protected against dephosphorylation unless ADP or cyclic AMP were present.  相似文献   

15.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

16.
The activity of soluble protein kinase and phosphorylation of endogenous synaptosomal proteins were studied in vitro, in the hippocampus and cerebral cortex of rats 3, 12, or 24 months of age. No between-age differences in the activity of cyclic AMP-dependent or independent protein kinase were detected in either brain region. The degree of stimulation by cyclic AMP and the apparent Ka, for cyclic AMP were similar at all stages. Cyclic AMP stimulated the phosphorylation of synaptosomal proteins from the cerebral cortex, hippocampus, caudate nucleus, and cerebellum of rats at all ages. There were no significant differences across age in the extent of phosphorylation of any membrane proteins in any brain region. The number and staining density of synaptosornal proteins separated by polyacrylamide gel electrophoresis were also similar at all ages. These studies indicate that the cyclic AMP-dependent phosphorylation system in the rat brain does not change during advanced aging.  相似文献   

17.
Previous studies have provided evidence for adrenocorticotropic hormone (ACTH) effects on a wide variety of behaviors. However, the precise sites of action and the mechanisms by which these effects may be mediated have yet to be clearly elucidated. Although ACTH was shown to augment cyclic AMP levels in glial cells isolated from whole brain, other studies found little or no effect of ACTH peptides on cyclic nucleotide metabolism in slices of cerebral cortex or homogenates of whole brain. In the present study, our objective was to determine whether ACTH peptides regulate intracellular cyclic AMP levels in neurons of the cerebral cortex in primary culture. ACTH peptides stimulated cyclic AMP synthesis up to threefold in a dose-dependent manner; stimulation was complete within 5-10 min of exposure to agonists. Neurohormone efficacy was augmented by 0.1 microM forskolin (which was virtually ineffective alone); potency was unaffected. The order of potency (EC50) for increasing intracellular cyclic AMP levels was as follows: ACTH (1-24), ACTH (1-17) (10 nM) greater than alpha-melanocyte stimulating hormone, beta-melanocyte stimulating hormone (alpha-MSH, beta-MSH) (100 nM) greater than ACTH (1-10) (1 microM) greater than ACTH (4-10) (5 microM). The hexapeptide ACTH (4-9) as well as ACTH (11-24) were inactive at concentrations as high as 10 microM. Other neuropeptides derived from proopiocortin, such as beta-endorphin and Met- and Leu-enkephalin were without effect on basal or hormonally stimulated cyclic AMP synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Myelin isolated from the rat peripheral nervous system (sciatic nerve and cauda equina) contained Mg2+-dependent protein kinase that phosphorylated myelin polypeptides. Ca2+, in micromolar concentrations, markedly stimulated phosphorylation (half-maximal stimulation at 5 microM (free) Ca2+) but at higher concentrations (greater than 100 microM Ca2+) it caused inhibition. In the presence of Triton X-100, phosphorylation (+/-Ca2+) of myelin was increased and Ca2+ caused up to a 10-fold increase in phosphorylation. Among the myelin polypeptides, P0 (Mr, 28 000), a major glycoprotein, accounted for nearly 60% of the total phosphate incorporated into the myelin and Ca2+ markedly promoted phosphorylation of P0. Phosphorylation of other myelin polypeptides, P2 (Mr, 16 000), Y (Mr, 26 000), and P1 (Mr, 20 000), and the Ca2+-stimulatory effect on phosphorylation of these were also evident. Cyclic AMP (or other cyclic nucleotides) failed to show any significant stimulatory effect on myelin phosphorylation.  相似文献   

19.
Abstract— Microsomes from rat brain exhibited protein kinase activity which was stimulated by cyclic AMP when assayed in the presence of exogenous protein substrate, such as thymus histone. In the absence of exogenous substrate some phosphorylation of microsomal protein occurred, but no stimulation by cyclic AMP could be discerned, probably because of limitations of substrate. The maximal activity of microsomal protein kinase observed in the presence of saturating concentrations of histone and the optimal concentration (5 μ m ) of cyclic AMP remained essentially unchanged from birth to early adulthood, but the magnitude of the stimulation by cyclic AMP was significantly higher at birth than at 30 days of age. Brain ribosomal proteins could be phosphorylated by the cyclic AMP-dependent brain protein kinase. Their total capacity for acceptance of phosphate by means of this phosphorylation reaction remained unchanged throughout the postnatal development of the brain. Our results are consistent with the possibility that phosphorylation of ribosomal protein mediated by cyclic AMP-dependent protein kinase may play a a role in the postnatal regulation of cerebral protein synthesis, as a result of the changes in the levels of cyclic AMP known to occur in brain during postnatal maturation.  相似文献   

20.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号