首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frog oocyte glycogen synthase properties differ significantly under in vitro or in vivo conditions. The K(mapp) for UDP-glucose in vivo was 1.4mM (in the presence or absence of glucose-6-P). The in vitro value was 6mM and was reduced by glucose-6-P to 0.8mM. Under both conditions (in vitro and in vivo) V(max) was 0.2 m Units per oocyte in the absence of glucose-6-P. V(max) in vivo was stimulated 2-fold by glucose-6-P, whereas, in vitro, a 10-fold increase was obtained. Glucose-6-P required for 50% activation in vivo was 15 microM and, depending on substrate concentrations, 50-100 microM in vitro. The prevailing enzyme obtained in vitro was the glucose-6-P-dependent form, which may be converted to the independent species by dephosphorylation. This transformation could not be observed in vivo. We suggest that enzyme activation by glucose-6-P in vivo is due to allosteric effects rather than to dephosphorylation of the enzyme. Regulatory mechanisms other than allosteric activation and covalent phosphorylation are discussed.  相似文献   

2.
In normal fed rats, glycogen synthase D phosphatase activity in a glycogen pellet preparation was only partially inhibited (approximately 50%) by high concentrations of EDTA. However, the proportion of phosphatase activity inhibited by EDTA was markedly and rapidly (15 s) increased following glucagon or cAMP administration. Epinephrine administration did not alter the proportion of activity inhibited by EDTA. Glucose administration rapidly (2 min) reduced the proportion of synthase phosphatase activity inhibitable by EDTA. That is, the effect of glucose was just the opposite of that produced by glucagon or cAMP. Insulin administration had no effect on phosphatase activity. Synthase phosphatase activity assayed in the absence of EDTA was similar in all groups except for a moderate increase after glucose administration. Addition of Mg2+ completely reversed EDTA inhibition. Phosphorylase phosphatase activity in each group was not modified by addition of EDTA, although the percentage of phosphorylase in the alpha form was higher in glucagon-treated and lower in the glucose-treated animals as expected. These data suggest the presence of rapidly interconvertible forms of either synthase phosphatase or its substrate synthase D, detectable as a change in EDTA inhibitability and subject to glucose and glucagon control.  相似文献   

3.
A liver glycogen pellet preparation previously found to contain synthase D phosphatase activity was shown to contain also phosphohistone phosphatase activity. Pellet phosphohistone phosphatase and synthase D phosphatase competed for the same substrates and appeared to be the same enzyme. ATP, a potent inhibitor, and G-6-P, a potent activator of the synthase phosphatase reaction, had little effect on the phosphohistone phosphatase reaction. These observations suggest that the ATP and G-6-P effects are relatively specific and are probably caused by binding to the synthase D substrate. The observed effects of NaCl and KCl were more complex. They stimulated phosphohistone phosphatase activity but strikingly inhibited synthase phosphatase activity. Sodium fluoride inhibited both reactions.  相似文献   

4.
5.
6.
The relationship between dephosphorylation and D to I conversion of skeletal muscle glycogen synthase by synthase phosphatase was investigated using synthase preparations containing 1 to 3 mol of 32P/mol of subunit (90,000 g). Dephosphorylation was analyzed in terms of 32P release from the trypsin-sensitive and trypsin-insensitive phosphorylation regions of synthase. With synthase containing 1 to 2 mol of 32P/90,000 g, dephosphorylation of the trypsin-insensitive region correlated closely with D to I conversion and was more rapid than dephosphorylation of the trypsin-sensitive region. Synthase containing 3 mol of 32P/90,000 g was a relatively poor substrate for the phosphatase since dephosphorylation of both regions, as well as D to I conversion, was slow. With this species of synthase, glucose-6-P (0.1 mM) increased the rates of D to I conversion and dephosphorylation of trypsin-insensitive region. It is concluded that dephosphorylation of the trypsin-insensitive region is responsible for the conversion of synthase D to I.  相似文献   

7.
8.
When synthase D was converted into synthase I in a liver extract, it progressed through a synthase form with activity characteristics that could not be explained by a mixture of the original synthase D and the final product, synthase I. This form was distinguished by an affinity for UDP-glucose, in the absence of glucose 6-phosphate, which was intermediate between those of the two known forms.  相似文献   

9.
Komina O  Zhou Y  Sarath G  Chollet R 《Plant physiology》2002,129(4):1664-1673
Sucrose synthase (SS) is a known phosphoserine (SerP)-containing enzyme in a variety of plant "sink" organs, including legume root nodules, where it is phosphorylated primarily at Ser-11. Using immunofluorescence confocal microscopy, we documented that part of the total SS (nodulin-100) pool in mature soybean (Glycine max) nodules is apparently associated with the plasma membrane in situ, and we report that this association is very "tight," as evidenced by a variety of chemical and enzymatic pretreatments of the isolated microsomal fraction. To investigate the in situ and in planta phosphorylation state of the membrane (m) and soluble (s) forms of nodule SS, three complementary approaches were used. First, excised nodules were radiolabeled in situ with [(32)P]Pi for subsequent analysis of phosphorylated m- and s-SS; second, immunopurified s- and m-SS were used as substrate in "on-bead" assays of phosphorylation by nodule Ca(2+)-dependent protein kinase; and third, SS-Ser-11(P) phosphopeptide-specific antibodies were developed and used. The collective results provide convincing evidence that microsomal nodulin-100 is phosphorylated in mature nodules, and that it is hypophosphorylated relative to s-SS (on an equivalent SS protein basis) in attached, unstressed nodules. Moreover, the immunological data and related phosphopeptide mapping analyses indicate that a homologous N-terminal seryl-phosphorylation domain and site reside in microsomal nodulin-100. We also observed that mild, short-term inorganic nitrogen and salt stresses have a significant negative impact on the content and N-terminal phosphorylation state of nodule m- and s-SS, with the former being the more sensitive of the two SS forms.  相似文献   

10.
We have tested the hypothesis that interconversion between multiple glucose-6-P-dependent forms of glycogen synthase helps regulate glycogen synthesis in adipose tissue. Our results indicate that interconversion of glycogen synthase in adipose tissue involves primarily dependent forms and that these interconversions were measured better by monitoring the activation constant (A0.5) for glucose-6-P than measuring the -: + glucose-6-P activity ratio. Insulin decreased and epinephrine increased the A0.5 for glucose-6-P without significant change in the activity ratio. Insulin consistently decreased the A0.5 in either the presence or absence of glucose, indicating that the insulin-promoted interconversion did not require increased hexose transport. Isoproterenol increased the A0.5 for glucose-6-P, while methoxamine was without effect, indicating beta receptors mediate adrenergic control of interconversion between glucose-6-P-dependent forms. The changes in the A0.5 produced by incubations with insulin or epinephrine were mutually reversible. We conclude that 1) glycogen synthesis in adipose tissue is catalyzed by multiple glucose-6-P-dependent forms of glycogen synthase, 2) hormones regulate glycogen metabolism by promoting reversible interconversions between these forms, and 3) there is no evidence that a glucose-6-P-independent form of glycogen synthase exists in intact adipose tissue.  相似文献   

11.
12.
Glycogen-free synthase I from human polymorphonuclear leukocytes is activated by its own substrate, glycogen, in a slow, time-dependent process (hysteretic activation). This lag in response to addition of glycogen depends on the concentration of glycogen, pH and temperature. At pH 7.4 and at a temperature of 30 degrees C, the half-time of activation t 1/2 decreases from 89 min at 0.004 mg/ml glycogen to 6 min at 25 mg/ml. The activation is accelerated by increasing temperature and pH, but is not influenced by enzyme concentration, glucose 6-phosphate, UDP, high ionic strength, EDTA, mercaptoethanol, glucose, sucrose or amylase limit dextrin. The Km for UDP-glucose (0.024 mM) and the activity ratio were unchanged during the activation process. The activation can be described by vt = vf + (vo - vf) e-kt where vt, vf and vo are velocities at times t, O and infinity and k is a complex rate constant. Evidence from ultracentrifugation and kinetic studies is presented to substantiate the hypothesis that the underlying mechanism is a simple biolecular process: enzyme + glycogen in equilibrium enzyme-glycogen complex, with the dissociation constant Ks = 0.003 mg/ml. The hysteretic activation may become rate-limiting during experiments in vitro with synthase. The possibility of a physiological role in glycogen metabolism, perhaps in the form of a concerted hysteresis with H+ is discussed.  相似文献   

13.
The glycogen particle - glycogen metabolizing enzyme complex was investigated to gain some understanding of its physiological significance. Fractionations of populations of particles from mouse liver were carried out utilising open column and high performance liquid chromatography, and based either on the molecular weight of the particles or the hydrophobic interactions of the glycogen-associated proteins. The activities of glycogen phosphorylase and glycogen synthase were measured in these fractions. Fractionations were of tissue in different stages of glycogen deposition or mobilization. In animals fed ad libitum, glycogen synthase was associated with the whole spectrum of molecular weights, while the glycogen phosphorylase distribution was skewed in favour of the lower molecular weight species. Under conditions of glycogen mobilization, the phosphorylase distribution changed to include all molecular weights. The hydrophobic interaction separations demonstrated that glycogen synthase binds to a specific subpopulation of particles that is a minor proportion of the total. In general, there was a direct relationship of the total amount of phosphorylase and synthase bound during periods of mobilization and deposition, respectively. Two notable exceptions were the large amounts of glucose-6-P dependent synthase present during the early period of glycogen mobilization and the high amounts of active phosphorylase appearing shortly after food withdrawal, in spite of interim glycogen deposition from presumably already ingested food.  相似文献   

14.
15.
16.
Molecular forms of aconitase and their interconversions.   总被引:2,自引:0,他引:2       下载免费PDF全文
Aconitase, as isolated from mammalian mitochondria by traditional methods, is virtually inactive and contains an oxidized [3Fe-4S]+ cluster. The activation of the enzyme and attendant conformational change have been studied by monitoring the changes in activity, in tryptophan fluorescence, and in the electron paramagnetic resonance of the cluster on incubation with dithionite, with and without added Fe2+. Restoration of the full activity is achieved with one electron per 3Fe cluster and at least 0.6 g-atoms of Fe2+ per mol. The process involves building up of [4Fe-4S]2+ clusters. Other metal ions do not substitute for Fe2+. Reduction alone, in the absence of added Fe2+, yields up to 70% of the maximum activity, but requires approx. 1.8 electrons of reductant per cluster. The results presented are consistent with the view that activation without added Fe2+ involves the destruction of some of the [3Fe-4S] clusters and the incorporation of the Fe so liberated into other clusters to yield a tetra-nuclear one. In particular, the effect of EDTA and of other iron chelators in inhibiting activation by dithionite alone is in accord with this view, although recent magnetic-circular-dichroism studies do not support this interpretation. The rates of increase in activity and tryptophan fluorescence are the same when Fe2+ is present, but in its absence, activation is very much slower than the increase in fluorescence, suggesting that the protein conformational change triggered by reduction of the Fe-S clusters precedes the insertion of the iron. Consistent with this view is the observation that iron chelators inhibit activation by dithionite, but not the increase in fluorescence and, hence, the conformational change. The results are discussed in light of data in the literature on the forms of the cluster and its possible function in catalysis.  相似文献   

17.
T Higashi  M Horike  R Kikuchi  K Shimada 《Steroids》1999,64(10):715-725
Glucuronidation of 24,25-dihydroxyvitamin D3 has been investigated in in vitro and in vivo experiments. Three positional isomers of 24,25-dihydroxyvitamin D3 monoglucuronide were synthesized from 24,25-dihydroxyprovitamin D3 derivatives with Koenigs-Knorr reaction and used as standard samples. In the presence of the rat liver microsomal fraction and uridine-5'-diphosphoglucuronic acid, 24,25-dihydroxyvitamin D3 gave 3- and 24-glucuronides as the main products in almost equal amounts, but only a small amount of the corresponding 25-glucuronide was obtained. 24,25-Dihydroxyvitamin D3 monoglucuronide was deconjugated with rat intestine homogenate, which indicated the entero-hepatic circulation of 24,25-dihydroxyvitamin D3. After the administration of 24,25-dihydroxyvitamin D3 to rats, its 3- and 24-glucuronides were identified from the bile as inferred from the in vitro experiment. However, the in vivo glucuronidation occurred at the 24-position in preference to the 3-position, and the corresponding 25-glucuronide was not detected. These glucuronides were identified in comparison with standard samples based on their chromatographic behavior during high-performance liquid chromatography and data obtained from liquid chromatography-electrospray ionization-mass spectrometry, which was helpful in identifying these compounds.  相似文献   

18.
Glycogen synthase from human liver was studied, and its properties were compared with those of rat liver glycogen synthase. The rat and human liver glycogen synthases were similar in their pH profile, in their kinetic constants for the substrate UDP-glucose and the activator glucose 6-phosphate, and in their elution profiles from Q-Sepharose. The apparent molecular weight of the human synthase subunit was 80,000-85,000 by gel electrophoresis, which is similar to that of the rat enzyme. In addition, antibodies to rat liver glycogen synthase recognized human liver glycogen synthase, indicating that the enzymes of these two species share antigenic determinants. However, there were significant differences between the two enzymes. In particular, the total activity of the human enzyme was higher than that of the rat. The human enzyme, purified to near homogeneity, had a specific activity of 40 U/mg protein compared with 20 U/mg protein for the rat enzyme. The active forms of the rat enzyme had greater thermal stability than those of the human enzyme, but the human enzyme was more stable on storage in various buffers. Last, amino acid analysis indicated differences between the enzymes of the two species. Since glycogen synthase is an important enzyme in liver glycogen synthesis, the characterization of this enzyme in the human will help provide insight regarding human liver glycogen synthesis.  相似文献   

19.
20.
Fasting newborn and growing young rats, though capable of synthesizing liver glycogen when fed, are, unlike adult fasted animals, insensitive to glucocorticoid stimulation of the rate of glucose and lactate incorporation into glycogen. Hormone resistance parallels a decreased liver capability for the synthase b to a conversion reaction up to 2 days after birth, after which the b to a transformation becomes adult type in nature. A comparison of the level of glucose 6-phosphate in liver to the effect of the activator on the synthase activity from newborn rat shows that the enzyme has a greater affinity toward the activator than comparable enzyme from the adult, suggesting the presence of an intermediate metabolite-regulated form of synthase in neonatal liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号