首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Incorporation of phosphate groups into a material may be of particular interest as they act as templates for hydroxyapatite growth through complexation with Ca2+ and thus improve the osteoconduction property. The phosphate groups can be incorporated into chitosan through ionotropic gelation with tripolyphosphate (TPP). Interestingly, the ion pairs formed through negatively charged phosphate groups with protonated amine functionality of chitosan in ionotropic gelation are expected to provide chitosan with an amphoteric character, which may facilitate protein adhesion following enhanced attachment of anchorage dependant cells than chitosan, which shows poor cell adhesion properties. In this study, chitosan–tripolyphosphate (TPP) fibers with varying phosphate contents were prepared through wet spinning in STPP baths of different pH. Gelation kinetics and gel strength of chitosan with STPP solutions of three different pH were evaluated and compared with that of NaOH solution for evaluation of their influence on nature of gelation. The solution pH of STPP baths was found to have significant control on the extent of ionic cross-linking and physico-chemical properties of the fibers. Moreover, this kinetically driven ionotropic gelation of chitosan by TPP results in low degree of crystallinity of chitosan–TPP fibers and consequently their lower thermal stability than chitosan fibers.  相似文献   

2.
Preparation of chitosan particles suitable for enzyme immobilization   总被引:1,自引:0,他引:1  
Macro-, micro- and nanosized chitosan particles suitable as immobilization carriers were prepared by precipitation, emulsion cross-linking and ionic gelation methods, respectively. Effects of particle preparation parameters on particle size were investigated. Activities of β-galactosidase covalently attached to differently sized particles have been evaluated and compared. The highest activity was shown by the biocatalyst immobilized on nanoparticles obtained by means of the ionotropic gelation method with sodium sulphate as gelation agent. β-Galactosidase fixed on macro- and microspheres exhibited excellent storage stability in aqueous solution, with no more than 5% loss of activity after 3 weeks storage at 4 °C and pH 7.0.  相似文献   

3.
The purpose of this research was to formulate and system-atically evaluate in vitro and in vivo performances of mucoadhesive microspheres of glipizide. Glipizide microspheres containing chitosan were prepared by simple emulsification phase separation technique using glutaraldehyde as a cross-linking agent. Results of preliminary trials indicate that volume of cross-linking agent, time for cross-linking, polymer-to-drug ratio, and speed of rotation affected characteristics of microspheres. Microspheres were discrete, spherical, and free flowing. The microspheres exhibited good mucoadhesive property in the in vitro wash-off test and also showed a high percentage drug entrapment efficiency. A 32 full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio (X 1), and stirring speed (X 2) on dependent variables percentage mucoadhesion, t80, drug entrapment efficiency, and swelling index. The best batch exhibited a high drug entrapment efficiency of 75% and a swelling index of 1.42; percentage mucoadhesion after 1 hour was 78%. The drug release was also sustained for more than 12 hours. The polymer-to-drug ratio had a more significant effect on the dependent variables. In vivo testing of the mucoadhesive microspheres to albino Wistar rats demonstrated significant hypoglycemic effect of glipizide.  相似文献   

4.
Li JM  Meng XG  Hu CW  Du J 《Bioresource technology》2009,100(3):1168-1173
Functional chitosan, chemically modified by salicylaldehyde (CS-SA), beta-cyclodextrin (CS-CD), and a cross-linked beta-cyclodextrin polymer (EPI-CD) were prepared as adsorbents to remove phenol, p-nitrophenol and p-chlorophenol from aqueous solution. Langmuir and Freundlich models were applied to describe the adsorption isotherm of phenols, and adsorption parameters were evaluated. Functional chitosan displayed outstanding adsorption ability for phenols. To our surprise, CS-CD exhibited specific adsorption ability for p-chlorophenol. The possible adsorption interaction was discussed. Effects of pH and KCl on the adsorption suggested that the adsorption of phenols was predominated by hydrogen bonding, hydrophobic interaction and pi-pi interaction not electrostatic interaction. Effect of temperature indicated that the low temperature was favorable for the adsorption of phenols. Separation of phenols and adsorbent regeneration were carried out by simple washing with ethanol and filtrating.  相似文献   

5.
Silica gel/chitosan composite (SiCS) was prepared via., sol-gel method by mixing silica gel and chitosan and cross-linked with bifunctional cross-linker glutaraldhyde. The SiCS composite was characterized using FT-IR, SEM-EDAX, XRD and BET methods. The sorption of copper and lead ions onto SiCS has been investigated. The SiCS composite was found to have excellent metal sorption capacity than the silica gel (Si) and chitosan (CS). The sorption experiments were carried out in batch mode to optimize various parameters viz., contact time, pH, initial metal ion concentration, co-ions and temperature that influence the sorption. Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models were applied to describe isotherm constants. Equilibrium data agreed well with the Freundlich isotherm model. Thermodynamic studies revealed that the nature of sorption is spontaneous and endothermic. The SiCS removes metals by means of adsorption and complexation. Sorption capacity of SiCS is compared with other sorbents which suggest that this composite was useful for removing copper and lead from aqueous solution.  相似文献   

6.
The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.  相似文献   

7.
Microspheres of tramadol hydrochloride (TM) for oral delivery were prepared by complex coacervation method without the use of chemical cross-linking agents such as glutaraldehyde to avoid the toxic reactions and other undesirable effects of the chemical cross-linking agents. Alternatively, ionotropic gelation was employed by using sodium-tripolyphosphate as cross-linking agent. Chitosan and gelatin B were used as polymer and copolymer, respectively. All the prepared microspheres were subjected to various physicochemical studies, such as drug–polymer compatibility by thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectroscopy, surface morphology by scanning electron microscopy, frequency distribution, drug entrapment efficiency, in vitro drug release characteristics and release kinetics. The physical state of drug in the microspheres was determined by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). TLC and FTIR studies indicated no drug–polymer incompatibility. All the microspheres showed initial burst release followed by a fickian diffusion mechanism. DSC and XRD analysis indicated that the TM trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. From the preliminary trials, it was observed that it may be possible to formulate TM microspheres by using biodegradable natural polymers such as chitosan and gelatin B to overcome the drawbacks of TM and to increase the patient compliance.  相似文献   

8.
The effects of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel on microspheres preparation or drug release were studied. The rate of gelation is zero order corresponding to the chitosan concentration but non-zero order corresponding to the glutaraldehyde concentration. It was suggested that the cross-linking reaction was mainly dominated by the concentration of small molecule reactant, glutaraldehyde. The relaxation of an entangled polymer chain in a gel network as a result of the swelling of cross-linked chitosan hydrogel was investigated by the stress–strain determination. The higher the cross-linking density of chitosan hydrogel, the lower the swelling ability of chitosan hydrogel due to the slower relaxation rate of polymer chain, which then results in the decreased drug-release rate.  相似文献   

9.
The purpose of our investigation was to develop and optimize the drug entrapment efficiency and bioadhesion properties of mucoadhesive chitosan microspheres containing ranitidine HCl prepared by an ionotropic gelation method as a gastroretentive delivery system; thus, we improved their protective and therapeutic gastric effects in an ulcer model. A 3?×?22 full factorial design was adopted to study the effect of three different factors, i.e., the type of polymer at three levels (chitosan, chitosan/hydroxypropylmethylcellulose, and chitosan/methylcellulose), the type of solvent at two levels (acetic acid and lactic acid), and the type of chitosan at two levels (low molecular weight (LMW) and high molecular weight (HMW)). The studied responses were particle size, swelling index, drug entrapment efficiency, bioadhesion (as determined by wash-off and rinsing tests), and T 80% of drug release. Studies of the in vivo mucoadhesion and in vivo protective and healing effects of the optimized formula against gastric ulcers were carried out using albino rats (with induced gastric ulceration) and were compared to the effects of free ranitidine powder. A pharmacokinetic study in rabbits showed a significant, 2.1-fold increase in theAUC0–24of the ranitidine microspheres compared to free ranitidine after oral administration. The optimized formula showed higher drug entrapment efficiency and mucoadhesion properties and had more protective and healing effects on induced gastric ulcers in rats than ranitidine powder. In conclusion, the prolonged gastrointestinal residence time and the stability of the mucoadhesive microspheres of ranitidine as well as the synergistic healing effect of chitosan could contribute to increasing the potential of its anti-gastric ulcer activity.  相似文献   

10.
The one-pot synthesis and characterization of cross-linked quaternized chitosan microspheres (CQCM) as a protein adsorbent are presented. First of all, chitosan particles were prepared by spray drying method, and then they were quaternized and cross-linked in turn with glycidyltrimethylammonium (GTMAC) chloride and glutaraldehyde in isopropanol containing 10% water in one-pot. The effect of the reaction temperature, reaction time and the amounts of added GTMAC and glutaraldehyde on the protein adsorption ability of CQCM was investigated. The adsorption behavior of the CQCM prepared in the optimum synthetic conditions was well described by the Langmuir isotherm with maximum adsorption capacity equal to 1424 mg BSA/g dry weight. The particle size ranged from 7.6 to 48.9 μm. The mechanism of adsorption-desorption of BSA to the CQCM was ion-exchange. Finally, the extraction of soybean peroxidase from crude soybean peroxidase solution using the CQCM was performed.  相似文献   

11.
A batch adsorption system was applied to study the adsorption of Fe(II) and Fe(III) ions from aqueous solution by chitosan and cross-linked chitosan beads. The adsorption capacities and rates of Fe(II) and Fe(III) ions onto chitosan and cross-linked chitosan beads were evaluated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to enhance the chemical resistance and mechanical strength of chitosan beads. Experiments were carried out as function of pH, agitation period, agitation rate and concentration of Fe(II) and Fe(III) ions. Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Equilibrium data agreed very well with the Langmuir model. The kinetic experimental data correlated well with the second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Results also showed that chitosan and cross-linked chitosan beads were favourable adsorbers.  相似文献   

12.
Polymer nanoparticles (NPs) are promising systems for the delivery of protein drugs, as they enhance circulation half‐life, reduce degradation, and increase selectivity of the encapsulated agent. Among the different methods for the preparation of protein‐loaded NPs, ionotropic gelation—which exploits cross‐linking between charged groups in the polymer and counterions in the protein solution—has been extensively investigated for chitosan NPs. The present study aims at exploring the possibility to apply the method to prepare BSA‐loaded polyurethane NPs. A poly(ε‐caprolactone)/poly(ethyleneglicol)‐based polyurethane bearing tert‐butyloxycarbonyl‐protected amino groups was synthesized by a two‐step synthesis procedure. Amino functionalities were exposed under acidic conditions, as confirmed by ninhydrin assay, and then exploited to obtain ionic cross‐linking with sodium tripolyphosphate counterions. The effect of polymer and sodium tripolyphosphate concentration on particles size and BSA encapsulation has been investigated, showing that the PUR concentration plays a major role. Small particles, at 300 nm, with high BSA loading (90%) have been obtained. Sustained BSA release and low burst effect (20%) have been observed, indicating good interaction between the protein and the polymer matrix. The study highlights the possibility of introducing alternative polymers to improve loading and release of proteins from NPs obtained through the ionotropic gelation method.  相似文献   

13.
The purpose of this research was to prepare spray-dried mucoadhesive microspheres for nasal delivery. Microspheres composed of hydroxypropyl methylcellulose (H), chitosan (CS), carbopol 934P (CP) and various combinations of these mucoadhesive polymers, and maltodextrin (M), colloidal silicon dioxide (A), and propylene glycol (P) as filler and shaper, were prepared by spray-drying technique. Using propranolol HCl as a model drug, microspheres were prepared at loadings exceedings 80% and yields between 24% and 74%. Bulky, free flowing microspheres that had median particle size between 15 and 23 μm were obtained. Their zeta potential was according to the charge of polymer. Adhesion time of mucoadhesive microspheres on isolated pig intestine was ranked, CS>CP: H>CP>H, while the rank order of swelling was CP>CS>H. Increasing the amount of CP in CP∶H formulations increased the percentage of swelling. Infrared (IR) spectra showed no interaction between excipients used except CS with acetic acid. The release of drug from CP and CP∶H microspheres was slower than the release from H and CS microspheres, correlated to their viscosity and swelling. Long lag time from the CP microspheres could be shortened when combined with H. The permeation of drug through nasal cell monolayer corresponded to their release profiles. These microspheres affected the integrity of tight junctions, relative to their swelling and charge of polymer. Cell viability was not affected except from CS microspheres, but recovery could be obtained. In conclusion, spray-dried microspheres of H, CS, CP, and CP∶H could be prepared to deliver drug through nasal cell monolayer via the opening of tight junction without cell damaging. Published: February 10, 2006  相似文献   

14.
Oral administration of insulin requires protein protection from degradation in the gastric environment and its absorption improvement in the intestinal tract. To achieve this objective several types of microspheres composed of alginate, chitosan and dextran sulphate have been prepared by ionotropic gelation. Parameters such as the mean particle size, swelling behaviour, insulin encapsulation efficiency, loading capacity and release profiles in simulated gastric and intestinal fluids have been compared for the systems developed. In this study, attempts have been made to increase insulin protection and to improve its release from microspheres by reinforcing the alginate matrix with chitosan and/or dextran sulphate. Dextran sulphate was able to avoid insulin release at pH 1.2, protecting the protein from the acidic environment and reducing the total insulin released at pH 6.8. This effect was explained by an interaction between the permanent negatively charged groups of dextran sulphate and insulin molecules.  相似文献   

15.
The equilibrium and kinetics of adsorption of reactive dye RR222 and Cu2+, and the activity of immobilization of acid phosphatase, on highly swollen chitosan beads were examined at 30°C. The chitosan was prepared from shrimp shell wastes and was cross-linked with different dosages of glutaraldehyde or glyoxal (100–80,000 mg/l). It was shown that the amounts of solute adsorption and the immobilization capacity of acid phosphatase on cross-linked chitosan beads were substantially affected by their degree of cross-linking. The cross-linking rate of chitosan with glutaraldehyde could be described by a pseudo-second-order equation and the cross-linking equilibrium by the Freundlich equation. This provided an experimental method to control the degree of cross-linking of chitosan beads. Finally, the activity and lifetime of the immobilized enzyme were measured to evaluate the application potential.  相似文献   

16.
The ionotropic gelation method for formation of crosslinked chitosan particles can be easily modified from ionic cross-linking to deprotonation by adjusting the pH of TPP. Chitosan was cross-linked ionically with TPP at lower pH and by deprotonation mechanism at higher pH. The swelling behavior of cross-linked chitosan appeared to depend on the pH of TPP. The ionically cross-linked chitosan showed higher swelling ability. Thus the nature of crosslinked chitosan can be tailor made to obtain the desired properties in terms of cross-linking density, crystallinity, and hydrophilicity.  相似文献   

17.
The purpose of the present work was the development and evaluation of stomach-specific controlled release mucoadhesive drug delivery system prepared by ionotropic gelation of gellan beads, containing acid-soluble drug amoxicillin trihydrate, using 32 factorial design with concentration of gellan gum and quantity of drug as variables. The study showed that beads prepared in alkaline cross-linking medium have higher entrapment efficiency than the acidic cross-linking medium. The entrapment efficiency was in the range of 32% to 46% w/w in acidic medium, which increased up to 60% to 90% w/w in alkaline medium. Batches with lowest, medium, and highest drug entrapment were subjected to chitosan coating to form a polyelectrolyte complex film. As polymer concentration increases, entrapment efficiency and particle size increases. Scanning electron microscopy revealed spherical but rough surface due to leaching of drug in acidic cross-linking solution, dense spherical structure in alkaline cross-linking solution, and rough surface of chitosan-coated beads with minor wrinkles. The in vitro drug release up to 7 h in a controlled manner following the Peppas model (r = 0.9998). In vitro and in vivo mucoadhesivity study showed that beads have good mucoadhesivity and more than 85% beads remained adhered to stomach mucosa of albino rat even after 7 h. In vitro growth inhibition study showed complete eradication of Helicobacter pylori. These results indicate that stomach-specific controlled release mucoadhesive system of amoxicillin gellan beads may be useful in H. pylori treatment.  相似文献   

18.
Chitosan microsphere (CS) was prepared by phase-inversion method as the support matrices. Cibacron Blue F3GA (CB) was covalently attached to the chitosan microspheres, and thus the novel dye-affinity adsorbent was obtained. These Cibacron Blue F3GA-attached chitosan microspheres (CB-CS) were used in the catalase (CAT) adsorption studies. The maximum CAT adsorption capacity of Cibacron Blue F3GA-attached chitosan microspheres was 28.4 mg/g at pH 7.0. Langmuir adsorption model was found to be applicable in interpreting CAT adsorption. Significant amount of the adsorbed CAT (up to 90.6%) was eluted in the elution medium containing 0.5 M NaSCN at pH 8.0. It appears that CB-CS can be applied for adsorption of CAT without causing any denaturation.  相似文献   

19.
A new biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to polyvinyl chloride (PVC) beads. The biosorbent was characterized by FTIR spectra, porosity and surface area analyses. Equilibrium and column flow adsorption characteristics of copper(II) and nickel(II) ions on the biosorbent were studied. The effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on the extent of adsorption was investigated. The experimental data were fitted to Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of Lagergren pseudo first order, pseudo-second order and Weber-Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of chitosan coated PVC sorbent as obtained from Langmuir adsorption isotherm was found to be 87.9 mg g(-1) for Cu(II) and 120.5 mg g(-1) for Ni(II) ions, respectively. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrated that chitosan coated PVC beads could be used for the removal of Cu(II) and Ni(II) ions from aqueous medium through adsorption.  相似文献   

20.
采用新型微孔膜乳化技术制备了载胰岛素的壳聚糖微球。研究表明,要制备粒径均一的壳聚糖微球,必须将亲水性膜修饰成疏水性;制得的微球粒径和所采用的膜孔径之间存在很好的线性关系,使得微球粒径可控;以胰岛素为模型药物,主要考察了交联剂用量和交联时间对微球表面形态、药物包埋率和微球体外释药特性的影响。结果表明当氨基与醛基的摩尔比为1∶0.7、交联时间为1h时,所得载药微球的包埋率最高,随着戊二醛用量的增加和交联时间的延长,药物体外释放速率减慢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号