首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
The trnK intron of plants encodes the matK open reading frame (ORF), which has been used extensively as a phylogenetic marker for classification of plants. Here we examined the evolution of the trnK intron itself as a model for group II intron evolution in plants. Representative trnK intron sequences were compiled from species spanning algae to angiosperms, and four introns were newly sequenced. Phylogenetic analyses showed that the matK ORFs belong to the ML (mitochondrial-like) subclass of group II intron ORFs, indicating that they were derived from a mobile group II intron of the class. RNA structures of the introns were folded and analyzed, which revealed progressive RNA structural deviations and degenerations throughout plant evolution. The data support a model in which plant organellar group II introns were derived from bacterial-like introns that had "standard" RNA structures and were competent for self-splicing and mobility and that subsequently the ribozyme structures degenerated to ultimately become dependent upon host-splicing factors. We propose that the patterns of RNA structure evolution seen for the trnK intron will apply to the other group II introns in plants.  相似文献   

3.
The complete nucleotide sequence of the group II RNA coliphage GA   总被引:14,自引:0,他引:14  
The complete nucleotide sequence of the RNA coliphage GA, a group II phage, is presented. The entire genome comprises 3466 bases. Three large open reading frames were identified, which correspond to the maturation protein gene (390 amino acids), the coat protein gene (129 amino acids) and the replicase beta-subunit protein gene (531 amino acids). In addition, untranslated regions occur at the 5' (135 bases) and 3' (122 bases) ends of the molecule. Two intercistronic untranslated regions occur between the cistrons for the maturation and coat proteins, and between the coat and beta-subunit proteins. We have compared the nucleotide sequence of GA RNA with the published sequence of MS2 RNA, and show that they are related. The comparative structures of two important regulatory regions are presented; the coat protein binding site which is involved in translational repression of the replicase beta-subunit protein gene, and a hairpin in a region proximal to the lysis protein gene.  相似文献   

4.
The development of PCR-based, easily automated molecular genetic markers, such as SSR markers, are required for realistic cost-effective marker-assisted selection schemes. This paper describes the development and characterization of 172 new SSR markers for the cassava genome. The placement of 36 of these markers on the existing RFLP framework map of cassava is also reported. Two similar enrichment methods were employed. The first method yielded 35 SSR loci, for which primers could be designed, out of 148 putative DNA clones. A total of 137 primer pairs could be designed from 544 putative clones sequenced for the second enrichment. Most of the SSRs (95%) were di-nucleotide repeats, and 21% were compound repeats. A major drawback of these methods of SSR discovery is the redundancy – 20% duplication; in addition, primers could not be designed for many SSR loci that were too close to the cloning site – 45% of the total. All 172 SSRs amplified the corresponding loci in the parents of the mapping progeny, with 66% of them revealing a unique allele in at least one of the parents, and 26% having unique alleles in both of the parents. Of the 36 SSRs that have been mapped, at least 1 was placed on 16 out of the 18 linkage groups of the framework map, indicating a broad coverage of the cassava genome. This preliminary mapping of the 36 markers has led to the joining of a few small groups and the creation of one new group. The abundance of allelic bridges as shown by these markers will lead to the development of a consensus map of the male- and female-derived linkage groups. In addition, the relatively higher number of these allelic bridges, 30% as against 10% for RFLPs in cassava, underscores SSR as the marker of choice for cassava. The 100% primer amplification obtained for this set of primers also confirms the appropriateness of SSR markers for use in cassava genome analysis and the transferability of the technology as a low-cost approach to increasing the efficiency of cassava breeding. Current efforts are geared towards the generation of more SSR markers to attain a goal of 200 SSR markers, or 1 SSR marker every 10 cM. Received: 15 November 1999 / Accepted: 14 April 2000  相似文献   

5.
6.
It is generally believed that bryophytes are the earliest land plants. However, the phylogenetic relationships among bryophytes, including mosses, liverworts and hornworts, are not clearly resolved. To obtain more information on the earliest land plants, we determined the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae. The circular double-stranded DNA of 161 162 bp is the largest genome ever reported among land plant chloroplasts. It contains 76 protein, 32 tRNA and 4 rRNA genes and 10 open reading frames (ORFs), which are identical with the chloroplast genome of the other green plants analyzed. The major difference is a larger inverted repeat than that of the liverwort Marchantia, Anthoceros contains an excess of ndhB and rps7 genes and the 3′ exon of rps12. The genes matK and rps15, commonly found in the chloroplast genomes of land plants, are pseudogenes. The intron of rrn23 is the first finding in the known chloroplast genomes of land plants. A striking feature of the hornwort chloroplast is that more than half of the protein-coding genes have nonsense codons, which are converted into sense codons by RNA editing. Maximum-likelihood (ML) analysis, based on 11 518 amino acid sites of 52 proteins encoded in the chloroplast genomes of the green plants, placed liverworts as the sister to all other land plants.  相似文献   

7.
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.  相似文献   

8.
Physiology and Molecular Biology of Plants - Dearth of information on extent of genetic variability in cassava limits the genetic improvement of cassava genotypes in Sierra Leone. The aim of this...  相似文献   

9.
Based on nine microsatellite loci, the aim of this study was to appraise the genetic diversity of 42 cassava (Manihot esculenta) landraces from selected regions in Brazil, and examine how this variety is distributed according to origin in several municipalities in the states of Minas Gerais, São Paulo, Mato Grosso do Sul, Amazonas and Mato Grosso. High diversity values were found among the five above-mentioned regions, with 3.3 alleles per locus on an average, a high percentage of polymorphic loci varying from 88.8% to 100%, an average of 0.265 for observed heterozygosity and 0.570 for gene diversity. Most genetic diversity was concentrated within the regions themselves (HS = 0.52). Cluster analysis and principal component based scatter plotting showed greater similarity among landraces from São Paulo, Mato Grosso do Sul and Amazonas, whereas those from Minas Gerais were clustered into a sub-group within this group. The plants from Mato Grosso, mostly collected in the municipality of General Carneiro, provided the highest differentiation. The migration of human populations is one among the possible reasons for this closer resemblance or greater disparity among plants from the various regions.  相似文献   

10.
Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.  相似文献   

11.
12.
De Carvalho R  Guerra M 《Hereditas》2002,136(2):159-168
Thirty-nine cultivars of cassava and eight related wild species of Manihot were analyzed in this work for number, morphology and size of chromosomes, prophase condensation pattern and the structure of the interphase nucleus. In four accessions, the chromosome size was measured and in some others, the number of secondary constrictions, meiotic behavior, C-band pattern, CMA/DAPI bands, nucleoli number and the location of 5S and 18S-5.8S-28S rDNA sites were also observed. All investigated accessions showed a similar karyotype with 2n = 36, small metacentric to submetacentric chromosomes. Two pairs of terminal secondary constrictions were observed in the chromosome complement of each accession except Manihot sp. 1, which presented two proximal secondary constrictions. The prophase chromosome condensation pattern was proximal and the interphase nuclei structure was areticulate to semi-reticulate. The meiosis, investigated in seven cultivars and four wild species, was regular, displaying 18 bivalents. C-banding revealed heterochromatin in 9 or 10 chromosomes. The analysis with fluorochromes frequently showed four chromosome pairs with a single CMA+ terminal or subterminal band and a few other chromosomes with DAPI+ unstable bands. Six 45S rDNA sites were revealed by FISH, which seemed to colocalize with six CMA+ bands. Only one chromosome pair presented a 5S rDNA site. The maximum nucleoli number observed per nucleus was also six. These data suggest that all Manihot species present a very similar chromosome complement.  相似文献   

13.
The complete nucleotide sequence of mulberry (Morus indica cv. K2) chloroplast genome (158,484 bp) has been determined using a combination of long PCR and shotgun-based approaches. This is the third angiosperm tree species whose plastome sequence has been completely deciphered. The circular double-stranded molecule comprises of two identical inverted repeats (25,678 bp each) separating a large and a small single-copy region of 87,386 bp and 19,742 bp, respectively. A total of 83 protein-coding genes including five genes duplicated in the inverted repeat regions, eight ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acids, were assigned on the basis of homology to predicted genes from other chloroplast genomes. The mulberry plastome lacks the genes infA, sprA, and rpl21 and contains two pseudogenes ycf15 and ycf68. Comparative analysis, based on sequence similarity, both at the gene and genome level, indicates Morus to be closer to Cucumis and Lotus, phylogenetically. However, at genome level, inclusion of non-coding regions brings it closer to Eucalyptus, followed by Cucumis. This may reflect differential selection pressure operating on the genic and intergenic regions of the chloroplast genome.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.Communicated by Y. Tsumura  相似文献   

14.
15.
Cassava can be cultivated on impoverished soils with minimum inputs, and its storage roots are a staple food for millions in Africa. However, these roots are low in bioavailable nutrients and in protein content, contain cyanogenic glycosides, and suffer from a very short post-harvest shelf-life, and the plant is susceptible to viral and bacterial diseases prevalent in Africa. The demand for improvement of cassava with respect to these traits comes from both farmers and national agricultural institutions. Genetic improvement of cassava cultivars by molecular biology techniques requires the availability of appropriate genes, a system to introduce these genes into cassava, and the use of suitable gene promoters. Cassava root-specific promoter for auxin-repressed protein was isolated using the gene walking approach, starting with a cDNA sequence. In silico analysis of promoter sequences revealed putative cis-acting regulatory elements, including root-specific elements, which may be required for gene expression in vascular tissues. Research on the activities of this promoter is continuing, with the development of plant expression cassettes for transformation into major African elite lines and farmers' preferred cassava cultivars to enable testing of tissue-specific expression patterns in the field.  相似文献   

16.
Syringa pinnatifolia is an endangered endemic species in China with important ornamental and medicinal value, and it needs urgent protection. Here, we report the complete chloroplast (cp) genome structure of S. pinnatifolia and its evolution is inferred through comparative studies with related species. The S. pinnatifolia cp genome was 155 326 bp and contained a large single copy region (LSC) of 86 167 bp and a small single copy region (SSC) of 17 775 bp, as well as a pair of inverted repeat regions (IRs) of 25 692 bp. A total of 113 unique genes were annotated, including 79 protein‐coding genes, 30 tRNA genes and four rRNA genes. The GC content of the S. pinnatifolia cp genome was 37.9%, and the corresponding values in the LSC, SSC and IR regions were 36.0, 32.1, 43.2% respectively. Repetitive sequences analysis revealed that the S. pinnatifolia cp genome contained 38 repeats. Microsatellite marker detection analysis identified 253 simple sequence repeats (SSRs), which provides opportunities for future studies of the population genetics and phylogenetic relationships of Syringa. Phylogenetic analysis of 29 selected cp genomes revealed that S. pinnatifolia is closely related to Syringa vulgaris and all 27 Lamiales species formed a clade separate from the two outgroup species. This newly characterized S. pinnatifolia chloroplast genome will provide a useful genomic resource of phylogenetic inference and the development of more genetic markers for species discrimination and population studies in the genus Syringa.  相似文献   

17.
We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8× depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373 bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,657 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperzia chloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophyte chloroplast genome data also enable a better reconstruction of the basal tracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, inferred amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.  相似文献   

18.
Experiments done in Santander de Quilichao (Cauca, Colombia) on two cassava cultivars indicated that cassava had at least three defence mechanisms against water deficit, enabling it to assimilate and store photosynthates in roots, even during prolonged droughts. These mechanisms include partial stomatal closure, ability of leaves to maintain reasonable net photosynthetic rate for long periods of water stress, reduced leaf area, and exploration of water from deep soil layers. While cassava responded positively to fertilization, no significant statistical differences were found between treatments of stress and non-stress, confirming cassava's ability to tolerate soil water deficit. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
To monitor genetic diversity in the field it is important that it is measured accurately. Here, we elucidate the potential of single nucleotide polymorphisms (SNPs) for measuring genetic diversity in cassava. The nature and frequency of SNPs was characterised and their utility in genetic diversity assessment compared to that of simple sequence repeats (SSRs). This was achieved by direct sequencing of amplicons in diverse cassava varieties. A total of 26 SNPs were identified from quality sequences of nine genes, giving an estimated frequency of one SNP every 121 nucleotides. Nucleotide diversity ranged from 7.8 × 10−4 to 5.6 × 10−3. Average haplotype-based polymorphic information content (PIC = 0.414) was higher than for individual SNPs (PIC = 0.228). The Mantel test indicated interdependence (r = 0.219; P < 0.001) between SNP and SSR genotypic data. Individual SNPs had lower PIC values than SSRs. For this reason larger numbers of SNPs may be necessary to achieve the same level of discrimination among genotypes provided by SSRs.  相似文献   

20.
De Tafur  S.M.  El-Sharkawy  M.A.  Cadavid  L.F. 《Photosynthetica》1998,34(2):233-239
Experiments done in Santander de Quilichao (Cauca, Colombia) on two cassava cultivars indicated that cassava had at least three defence mechanisms against water deficit, enabling it to assimilate and store photosynthates in roots, even during prolonged droughts. These mechanisms include partial stomatal closure, ability of leaves to maintain reasonable net photosynthetic rate for long periods of water stress, reduced leaf area, and exploration of water from deep soil layers. While cassava responded positively to fertilization, no significant statistical differences were found between treatments of stress and non-stress, confirming cassava's ability to tolerate soil water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号