首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel approach of using aqueous two-phase systems for the elution of protein from ligand-coupled particles is investigated using pyruvate kinase and alcohol dehydrogenase from recombinant Saccharomyces cerevisiae and Cibacron blue F3G-A-coupled Sepharose CL6B (Blue-Sepharose) particles as a model system. The ligand-coupled particles distribute quantitatively to the polyethylene glycol-(PEG-) rich top phase and the recovered enzymes partition selectively to the dextran-(DEX-) rich bottom phase. An effective recovery and partial purification of pyruvate kinase and alcohol dehydrogenase from Blue-Sepharose particles using PEG8000-DEXT500 aqueous two-phase systems are demonstrated through a modest increase of salt concentration. The bioselective eluting agent, MgADP, which is useful in chromatographic operations, is not required for the process using aqueous two-phase systems. Recovery of pyruvate kinase, which is bound to ligand-coupled particles, in the DEX-rich bottom phase of aqueous two-phase systems can be up to 95% in one-step operations. The mixing time of ligand-coupled particles with aqueous two-phase systems is a major controlling variable. The salt concentration, the molecular weight of polymer, and the total volume of aqueous two-phase systems also influence the recovery of pyruvate kinase from ligand-coupled particles. The recovered enzymes in the DEX-rich bottom phase remain biologically stable over a long period of storage time. The concentration of product protein in a reduced volume and the easy separation from ligand-coupled particles are added advantages of the process using aqueous two-phase systems. Preliminary studies with goat polyclonal anti-pyruvate kinase-coupled Sepharose particles indicate that the process also may be applicable when a high-affinity ligand such as antibody is used. The experimental results and a theoretical derivation based on equilibrium models for binding/dissociation of ligands and proteins show that the process results in better recovery as compared to that of conventional bulk elution techniques.  相似文献   

2.
Partitioning of a variety of organic compounds, the majority of which represent therapeutic drugs, was examined in an aqueous dextran–polyethylene glycol (Dex–PEG) two-phase system containing 0.15 M NaCl in 0.01 M sodium phosphate buffer at pH 7.3 and in an octanol–buffer (0.15 M NaCl in 0.01 M sodium phosphate buffer, pH 7.3) system. The possibility of introducing compounds to be partitioned in an aqueous two-phase system with dimethyl sulfoxide, and the effect of this solvent on the solute partitioning was explored. Relative hydrophobicity of the compounds was estimated and expressed in equivalent numbers of methylene units. Comparison of the results obtained for several subsets of compounds in the octanol–buffer and in aqueous Dex–PEG two-phase systems clearly demonstrates the advantage of aqueous two-phase partitioning for the hydrophobicity measurements over partitioning in octanol–buffer system.  相似文献   

3.
Mathematical strategies were applied to optimise the extraction of recombinant leucine dehydrogenase from E. coli homogenates and endoglucanase 1 from culture filtrates of Trichoderma reesei in polyethylene glycol–phosphate systems. The goal was to test mathematical tools which could facilitate the optimisation procedure in aqueous two-phase systems. A modified simplex approach, the method of steepest ascent and a genetic algorithm were successfully applied and compared. The methods differ in the height of the optimum found, the number of experiments and the time required. The genetic algorithm proved to be an optimisation procedure which can be used well in aqueous two-phase systems. The simplex procedure has to be further improved.  相似文献   

4.
Summary The study of recovery of an extracellular alkaline protease from fermentation broth produced by Norcadiopsis sp, was carried out with liquid–liquid extraction through sodium di-(2-ethylhexyl) sulphosuccinate/isooctane reversed micelles systems and aqueous two-phase systems (polyethylene glycol/potassium phosphate). The best conditions for extraction and back-extraction with the reversed micelles system was obtained at pH 9.0 and pH 5.0, respectively, showing a yield of protein of 6.16%, a specific activity of 4.10 U/ml and a purification factor of 1.80. The studies using aqueous two-phase systems of polyethylene glycol/potassium phosphate at pH 10.0 showed purification factors of 2 and 5, and protein yield of 11 and 4%, respectively, for polyethylene glycol 550/potassium phosphate and polyethylene glycol 8000/potassium phosphate. The results indicate that the aqueous two-phase systems are more attractive as a first step in the isolation and purification processes.  相似文献   

5.
This study describes the application of aqueous two-phase partition using polyethylene glycol (PEG)-potassium phosphate systems for the direct recovery of proteins, and aggregates thereof, from mammalian brain tissue homogenates. Investigation of established methodologies for the purification of prion proteins (PrP) from bovine brain affected with transmissible spongiform encephalopathy (BSE) has identified an alternative purification regime based on aqueous two-phase partition. This circumvents energy-intensive and rate-limiting unit operations of ultracentrifugation conventionally used for isolation of PrP. Selectivity of various PEG-phosphate systems varied inversely with polymer molecular mass. The maximum protein recovery from bovine brain extracts was obtained with systems containing PEG 300. Manipulation of the aqueous environment, to back-extract protein product from the PEG-rich top phase into the phosphate-rich lower phase, enabled integration of ATPS with conventional hydrophobic interaction chromatography (HIC) which selectively removes obdurate contaminating proteins (i.e. ferritin).  相似文献   

6.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   

7.
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)–dextran 37 500 (6% w/w)–0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20°C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG–dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.  相似文献   

8.
The acid–base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants Ka1, Ka2 and tautomeric constant Kz). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)–aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent–aqueous solution the distribution constant KD and dimerization constant Kdim values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.  相似文献   

9.
In this article, we describe a characterization method applicable to aqueous two-phase systems (ATPS) heavily loaded with complex biological feed-stocks. We also studied the partition behavior of mixtures of traceable and quantifiable radiolabeled amino acids, selected on the basis of their relative hydrophobicity A unique linear relation was established between the tie-line length (TLL: commonly determined by graphical methods) and the hydrophobic factor (HF) for ATPS comprising potassium phosphate and PEG alone, and validated for polymer molecular weights from 300 to 8000 Da in systems operated at an apparent pH value of 7.5. Radiolabeled amino acids were subsequently applied to the characterization of ATPS loaded with whole bovine blood by the determination of effective tie-line lengths (TLL(e)). The addition of biomass to ATPS increased TLL(e) relative to that of blank ATPS of equivalent original composition of PEG and phosphate. In addition, an increase of biomass loading (variously sourced from blood, yeast, and E. coli) contributed to phase formation and stabilization of loaded ATPS in respect of system sensitivity toward operational conditions. The controlled application of sensitive ATPS (adjacent to the binodal curve) could thus be reconsidered for further application of aqueous two-phase partitioning as a primary purification process. The application of effective tie-line determinations by distribution analysis of radiolabeled analytes (DARA) as a process-aid in the design and operation of ATPS in biorecovery is discussed.  相似文献   

10.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   

11.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

12.
A method for the release of intracellular enzyme by autolysis of Bacillus subtilis cells is presented. Both the growth and lysis processes were further applied to aqueous two-phase systems (ATPS). Lysis induced by the addition of Triton X-100 and by low-temperature treatment facilitated the release of cytoplasmic enzyme glucose-6-phosphate dehydrogenase (G6PDH) in ATPS. The release selectivity increased when lysis was regulated by the addition of 50 μM or 100 μM Triton X-100. Cardiolipin efficiently inhibited the autolytic process. Control of the autolytic system promoted the selective release of G6PDH. B. subtilis cells could be grown and lysed in aqueous two-phase systems in a similar fashion to the conventional single-phase medium solutions. The released enzymes were partitioned according to their surface properties. G6PDH were extracted to the top phase in a PEG1540/Dex100K-200K sytem. Cells were partitioned to the bottom phase or the interface, and could be recycled into the fermentor. The selectivity of enzyme production was also increased in two-phase systems by the addition of cardiolipin.  相似文献   

13.
An aqueous two-phase system composed by a thermoseparating random copolymer of ethylene oxide/propylene oxide 50/50 (%w/w), Breox, and hydroxypropyl starch – Reppal PES 100 was evaluated for the partitioning of Fusarium solani pisi recombinant cutinase. The effect of several additives on the partitioning of pure cutinase was evaluated. Micelles of sodium dodecanoate provided a ten-fold increase of the partitioning coefficient (K=9) and recovery yields of 60-75%. The phase diagrams of the systems composed of Breox, Reppal and sodium dodecanoate were determined and it was found that in systems with high surfactant concentrations, the binodal was moved to lower polymer concentrations, enabling a two-phase system with 6% (w/w) of each polymer.  相似文献   

14.
Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes.  相似文献   

15.
The influence of phase volume ratio on partition and purification of penicillin acylase from Escherichia coli on poly(ethylene glycol)–sodium citrate aqueous two-phase systems was studied. In PEG 1000 systems both partition coefficients of the enzyme and total protein increased with decreasing phase volume ratio. However, in PEG 3350 containing NaCl, penicillin acylase follows a reverse trend, while total protein behaves in the same way. Implications for protein purification designs are discussed.  相似文献   

16.
Partitioning in dextran–poly(ethylene)glycol (PEG) aqueous–aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum<mitochondria<Golgi apparatus<lysosomes and endosomes<plasma membranes. Salt concentrations and temperature affect partitioning behavior and must be precisely standardized. In some cases, it is more fortuitous to combine aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.  相似文献   

17.
Solvent polarity and pH in the coexisting aqueous phases of aqueous dextran-poly(ethylene glycol) and dextran-Ficoll two-phase systems of varied polymer concentrations were examined using the solvatochromic technique and potentiometric measurements, respectively. The relative solvent polarity of the phases, as measured by the solvatochromic technique, is suggested as a measure of the hydration power of water in the phases of aqueous polymer systems. Partitioning of a series of sulphonephthalein dyes in aqueous dextran-poly(ethylene glycol) and dextran-Ficoll two-phase systems of fixed polymer composition containing 0.01 mol/L universal buffer, pH 7.15, was studied. The results obtained are discussed together with those reported earlier on the physico-chemical features of aqueous media in the coexisting phases of the systems. It is suggested that the two phases of aqueous polymer systems should be viewed as two immiscible water-like solvents. The implications of the suggestion for the theoretical treatment of aqueous polymer two-phase systems are discussed.  相似文献   

18.
This study describes the partitioning of fluorescent macromolecules in aqueous two-phase systems (ATPS) comprising phosphate salt and poly(ethylene glycol) of three different molecular masses (i.e. 1000, 1450 and 2000 Da). The impact of system assembly was studied with fluorescent macromolecules introduced in contact with either (i) first salt, then polymer or (ii) first polymer, then salt, or (iii) with both salt and polymer simultaneously. Native human serum albumin (HSA) and derivatives labelled with N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulphonic acid (1,5-IAEDANS) were partitioned using selected ATPS. Partitioning behaviour was characterised by molecular rotational studies of recovered proteins based upon changes of depolarisation. Measurements were undertaken by steady-state fluorescence or time-decay fluorescence using a single-photon counting system. In addition, circular dichroism was used as a tool for the study of macromolecular secondary structure. Two discrete categories of stable molecular structure have been identified that exist irrespective of the phase environment. The findings form the basis for a discussion of polymer–protein interactions and the molecular micro-environment of proteins in ATPS.  相似文献   

19.
The cytoplasm of the eye lenses shows a liquid–liquid phase transition similar to the one observed in aqueous two-phase systems. This phenomenon is known as cold cataracts. We have studied the solution behavior of the main protein fractions that constitute the lenses’ cytoplasm using small-angle neutron scattering and dynamic light scattering. Our results provide evidence that an intricate balance of forces underlines the physical phenomena responsible for the optical properties of the lenses and for the phase transition that is observed as the temperature is lowered below some critical value. These forces include solvent-mediated forces besides the more conventional Coulombic and dispersion forces. This study suggests that solvent mediated forces must be included to successfully model liquid–liquid phase transitions like the ones observed in cold cataracts or in aqueous two-phase systems.  相似文献   

20.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号