首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
肿瘤转移是一个多步骤、多因素参与的复杂过程,是目前临床上绝大多数肿瘤患者的致死因素.上皮-间质转化(epithelial-mesenchymal transition,EMT)过程已被证实可促使肿瘤细胞发生转移.近年来许多研究表明,间质-上皮转化(mesenchymal-epithelial transition,MET)即EMT的逆过程,与肿瘤也密切相关,特别是肿瘤转移即形成继发性的肿瘤转移灶.深入研究肿瘤MET有望为肿瘤转移的预防和诊治提供新思路.  相似文献   

2.
黄颂  孟爱民 《生命科学》2015,(2):127-134
恶性肿瘤的浸润转移是导致肿瘤患者死亡的主要原因,转化生长因子-β(transforming growth factor-β,TGF-β)调节的上皮间质转化(epithelial-mesenchymal transition,EMT)能使肿瘤上皮细胞转变为具有间质特性的细胞,肿瘤细胞由此获得侵袭性和迁移性,从原发灶中逸出,进而发生转移。因此,对TGF-β调节的EMT在肿瘤浸润转移中作用的深入研究能够为临床治疗肿瘤转移提供研究基础。将对TGF-β调节EMT的信号通路,及其在肿瘤浸润转移中的作用和干预研究进行综述。  相似文献   

3.
4.
上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞失去连接和极性转变为间质细胞的过程,这一现象普遍存在于胚胎发育、创伤愈合、器官纤维化以及肿瘤转移.在胚胎早期发育和晚期发育过程,例如着床、原肠运动、心血管发育等事件中有EMT和间质上皮转化(mesenchymal-ep...  相似文献   

5.
恶性肿瘤的浸润转移是肿瘤恶变的主要表现形式之一,而上皮间质转化(epithelial-mesenchymal transition,EMT)是造成肿瘤浸润转移的重要机制.肿瘤细胞通过EMT获得迁移性,进而从原发灶脱离进入血液,随血液循环流动,然后从血管溢出并定植,形成转移灶.EMT的发生与分布在肿瘤周围的基质细胞有密切...  相似文献   

6.
肿瘤细胞向远处转移受多因素调控, 涉及多个基因, 需要经历一系列连续的、可选择的级联事件。上皮间质转化(Epithelial-mesenchymal transition, EMT)是肿瘤细胞转移中的关键步骤, 但肿瘤发生 EMT的机制至今尚不完全明确。微RNA (MicroRNA, miRNA)是一类内源性、非编码小分子RNA, 可在转录后水平负调控EMT相关基因的表达, 在肿瘤转移中发挥重要作用。文章主要就EMT与肿瘤转移的关系、影响EMT的转录因子, 以及miRNA通过靶向EMT相关的转录因子影响肿瘤转移等方面进行了综述。  相似文献   

7.
史莉  计薇 《生命科学》2023,(4):463-471
结直肠癌(colorectal cancer, CRC)是世界第三大常见的癌症。上皮间质转化(epithelial-mesenchymal transition, EMT)在肿瘤迁移和侵袭中起着非常重要的作用。本文主要总结了EMT在CRC进展中的作用及针对EMT的靶向治疗,对EMT的特点、EMT在结直肠癌转移侵袭中的作用以及EMT的临床应用进行了探讨和分析,同时对一些针对EMT的治疗靶点在CRC中的应用进行了评述,以期为深入理解CRC中EMT的作用和相关治疗研究提供新的视角。  相似文献   

8.
上皮-间质转化(epithelial-mesenchymal transition, EMT)发生在胚胎发生和肿瘤进展过程中,是一个动态的、受到高度调控的过程。EMT和其反过程间质-上皮转化(mesenchymal-epithelial transition,MET)不仅参与了机体的正常发育过程,在肿瘤的侵袭和转移等方面也起着重要的作用。越来越多的证据表明,在不同的肿瘤类型或同一肿瘤的不同发展阶段中,EMT发生的驱动因素不同,导致它在肿瘤转移中的作用也不尽相同,即呈现出内环境依赖特性。另外,部分EMT是EMT在肿瘤中的一种常见的表现形式,可以赋予细胞更高的可塑性,从而获得更强的侵袭能力。本综述将总结EMT在肿瘤细胞中的生物学特性以及多层级的调节机制,对不同的癌症内环境条件下,EMT与癌症转移的关系以及EMT作为潜在治疗靶点的临床意义进行探讨。  相似文献   

9.
上皮间质转化(epithelial-mesenchymal transition,EMT)和细胞衰老是与肿瘤发生密切相关的两个重要事件。在肿瘤发展过程中,上皮间质转化是促进迁移和侵袭的重要机制。细胞衰老作为一个重要的细胞自主的肿瘤预防机制,可以抑制细胞转化和肿瘤发生。虽然EMT和细胞衰老发生在肿瘤发展过程中的不同时间段,但众多研究发现,多种介导EMT发生的关键信号通路和转录因子能调节细胞衰老过程;同时,参与细胞衰老的经典信号通路也影响着EMT进程。就联系这两种细胞生物学事件的调控因素作一综述。  相似文献   

10.
刘飞  唐旭东 《生命科学》2015,(2):135-142
Brachyury是T-box转录因子家族的重要成员,与肿瘤发展密切相关,在肿瘤上皮-间质转化(epithelial-mesenchymal transition,EMT)中发挥重要作用,可能成为肿瘤免疫治疗的潜在靶点。从Brachyury与肿瘤转移、分期、预后的关系,对肿瘤EMT的诱导调节,对肿瘤传统治疗的抵抗及靶向Brachyury的肿瘤免疫治疗等方面进行了综述,并展望了Brachyury未来的研究方向和临床应用前景。  相似文献   

11.
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.  相似文献   

12.
Cancer metastasis consists of a sequential series of events, and the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are recognized as critical events for metastasis of carcinomas. A current area of focus is the histopathological similarity between primary and metastatic tumors, and MET at sites of metastases has been postulated to be part of the process of metastatic tumor formation. Here, we summarize accumulating evidence from experimental studies that directly supports the role of MET in cancer metastasis, and we analyze the main mechanisms that regulate MET or reverse EMT in carcinomas. Given the critical role of MET in metastatic tumor formation, the potential to effectively target the MET process at sites of metastasis offers new hope for inhibiting metastatic tumor formation.  相似文献   

13.
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.  相似文献   

14.
Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) programs are involced in the metastatic process. More and more evidence confirms that EMT is vital for the initiation and dissemination of cancer cells whereas MET is critical for successful metastatic colonization of a secondary organ. The regulating mechanism of EMT mediated cancer progression and metastasis has been deeply investigated. However, what processes are dependent on MET in metastatic cascades remains unclear. Here, we created a cell based high-content siRNA screen using the breast cancer cell line 4TO7 to search for kinases that were involved in Git2-induced MET. Our results revealed that 58 kinases including transferase, phosphorylation regulators, ATP/nucleotide partners potentially participate in Git2-induced MET. Our preliminary data is expected to facilitate elucidation of the mechanism on how MET is initiated during cancer metastasis.  相似文献   

15.
《Translational oncology》2020,13(6):100773
Epithelial-mesenchymal transitions (EMTs), the acquisition of mesenchymal features from epithelial cells, occur during some biological processes and are classified into three types: the first type occurs during embryonic development, the second type is associated with adult tissue regeneration, and the third type occurs in cancer progression. EMT occurring during embryonic development in gastrulation, renal development, and the origin and fate of the neural crest is a highly regulated process, while EMT occurring during tumor progression is highly deregulated. EMT allows the solid tumors to become more malignant, increasing their invasiveness and metastatic activity. Secondary tumors frequently maintain the typical histologic characteristics of the primary tumor. These histologic features connecting the secondary metastatic tumors to the primary is due to a process called mesenchymal-epithelial transition (MET). MET has been demonstrated in different mesenchymal tumors and is the expression of the reversibility of EMT. EMT modulation could constitute an approach to avoid metastasis. Some of the targeted small molecules utilized as antiproliferative agents have revealed to inhibit EMT initiation or maintenance because EMT is regulated through signaling pathways for which these molecules have been designed.  相似文献   

16.
17.
Transforming growth factor-β1 (TGF-β1) is a potent induction factor for epithelial–mesenchymal transition (EMT). Mesenchymal–epithelial transition (MET), as the inverse process of EMT, has recently been reported to promote the induction of induced pluripotent stem cells (iPSCs). We have developed pyrrole–imidazole (PI) polyamide, a novel gene regulator that targets human TGF-β1, and investigated its effects on the EMT/MET process. PI polyamide targeted to TGF-β1 significantly inhibited the mRNA expression of TGF-β1 and SNAI1 as an EMT marker and increased mRNA and protein expression of E-cadherin in human epithelial cells. To enhance the induction of iPSCs by the MET process, PI polyamide targeted to TGF-β1 was applied to human fibroblasts transfected with exogenous reprogramming factors by Sendai virus vector and grown in human iPSCs. The PI polyamide significantly increased the number of alkaline phosphatase-positive colonies. The expression of undifferentiated markers was also observed in these colonies. These results suggest that PI polyamide targeted to human TGF-β is a novel compound that can control the EMT/MET process of human epithelial cells and enhance the induction of human fibroblasts to iPSCs.  相似文献   

18.
Osteosarcoma (OS) is the most common malignant bone tumor. In cancer cells, autophagy is related to epithelial-to-mesenchymal transition (EMT). Although microRNA (miR)-506-3p has been demonstrated to act as a tumor suppressor in OS, its role in regulating the EMT process and autophagy remains unknown. The results showed that miR-506-3p directly inhibited the expression of sphingosine kinase 1 (SPHK1) in 143B and SaOS-2 cells. The invasive capability of OS cells was reduced following miR-506-3p mimics transfection, and restored when SPHK1 was overexpressed simultaneously. Further, miR-506-3p mimics initiated mesenchymal-to-epithelial transition (MET) – E-cadherin expression was upregulated, whilst vimentin and fibronectin were downregulated. The basal autophagy flux (LC3II/I) was suppressed by miR-506-3p mimics. The alterations induced by miR-506-3p mimics were partly reversed by SPHK1 overexpression or treatment of rapamycin. Meanwhile, treatment of SPHK1-transfected cells with 3-methyladenine inhibited EMT. The data suggest that miR-506-3p initiates MET and suppresses autophagy in OS cells by targeting SPHK1.  相似文献   

19.
Zhang L  Lei W  Wang X  Tang Y  Song J 《FEBS letters》2010,584(22):4646-4654
Epithelial-to-mesenchymal transition (EMT) has been implicated in various physiological and pathological events. In this study, we found that the synthetic glucocorticoid dexamethasone (Dex) can inhibit transforming growth factor-beta1-induced EMT and cell migration. We also demonstrated that Dex inhibits EMT through a mechanism involving the suppression of ROS generation. Surprisingly, Dex alone induced mesenchymal-to-epithelial transition (MET). Dexamethasone treatment abolished Snail1 binding to the E-cadherin promoter, suggesting that suppression of Snail1 contributes to the above roles of Dex. Our findings demonstrate that Dex functions as both a suppressor of EMT and as an inducer of MET and therefore may be implicated in certain pathophysiological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号