首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abutilon theophrasti (C3) and Amaranthus retroflexus (C4), were grown from seed at four partial pressures of CO2: 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) in the Duke Phytotron under high light, high nutrient, and wellwatered conditions to evaluate their photosynthetic response to historic and future levels of CO2. Net photosynthesis at growth CO2 partial pressures increased with increasing CO2 for C3 plants, but not C4 plants. Net photosynthesis of Abutilon at 15 Pa CO2 was 70% less than that of plants grown at 35 Pa CO2, due to greater stomatal and biochemical limitations at 15 Pa CO2. Relative stomatal limitation (RSL) of Abutilon at 15 Pa CO2 was nearly 3 times greater than at 35 Pa CO2. A photosynthesis model was used to estimate ribulose-1,5-bisphosphate carboxylase (rubisco) activity (Vcmax), electron transport mediated RuBP regeneration capacity (J max), and phosphate regeneration capacity (PiRC) in Abutilon from net photosynthesis versus intercellular CO2 (AC i) curves. All three component processes decreased by approximately 25% in Abutilon grown at 15 Pa compared with 35 Pa CO2. Abutilon grown at 15 Pa CO2 had significant reductions in total rubisco activity (25%), rubisco content (30%), activation state (29%), chlorophyll content (39%), N content (32%), and starch content (68%) compared with plants grown at 35 Pa CO2. Greater allocation to rubisco relative to light reaction components and concomitant decreases in J max and PiRC suggest co-regulation of biochemical processes occurred in Abutilon grown at 15 Pa CO2. There were no significant differences in photosynthesis or leaf properties in Abutilon grown at 27 Pa CO2 compared with 35 Pa CO2, suggesting that the rise in CO2 since the beginning of the industrial age has had little effect on the photosynthetic performance of Abutilon. For Amaranthus, limitations of photosynthesis were balanced between stomatal and biochemical factors such that net photosynthesis was similar in all CO2 treatments. Differences in photosynthetic response to growth over a wide range of CO2 partial pressures suggest changes in the relative performance of C3 and C4 annuals as atmospheric CO2 has fluctuated over geologic time.  相似文献   

2.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency.  相似文献   

3.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

4.
Abstract Long‐term exposure of plants to elevated CO2 often leads to downward photosynthetic acclimation. Nitrogen (N) deficiency could potentially exacerbate this response by reducing growth rate and the sink for photosynthates, but this has not always been observed. Experimentally, the interpretation of N effects on CO2 responses can be confounded by increasing severity of tissue N deficiency over time when N supply is not adjusted as demand increases. In this study, N supply ranged from sub‐ to supra‐optimal (20–540 kgN ha–l equivalent), and relatively stable levels of tissue N concentration were obtained in all treatments by varying twice‐weekly application rates in proportion to plant growth. The effects of N on photosynthesis and growth of beans (Phaseolus vulgaris L.) raised at ambient (35 Pa) and three elevated (70, 105, 140 Pa) CO2 partial pressures (pCO2) were evaluated. Averaging across N treatments, leaf total non‐structural carbohydrates (TNC) were 2.5‐ to 3‐fold higher and leaf N concentrations were 31–35% lower at elevated compared to ambient pCO2. Light‐saturated net CO2 assimilation rates measured at growth pCO2 (Asatg) were significantly higher (26–40% depending on N supply) in plants grown at elevated compared to ambient pCO2. When measured at a common pCO2 of 35 Pa, the Asat of plants grown at elevated CO2 was 15–29% less than that of plants grown at 35 Pa, indicative of downward photosynthetic acclimation. The magnitude of downward photosynthetic acclimation to elevated CO2 was greater in plants grown at high (180 and 540 kgN ha–l) compared to low (20 and 60 kgN ha–l) N supply, and this was associated with a higher Asat at growth pCO2, higher leaf area ratio (leaf area/total biomass), and higher TNC in leaves of high‐N plants. Our results indicate that the effect of N on acclimation to CO2 will depend on the balance between supply and demand for N during the growing period, and the effect this has on biomass allocation and source‐sink C balance at the whole‐plant level.  相似文献   

5.
Summary The characteristics of the photosynthetic apparatus of 11 Hawaiian Euphorbia species, all of which possess C4 photosynthesis but range from arid habitat, drought-deciduous shrubs to mesic or wet forest evergreen trees and shrubs, were investigated under uniform greenhouse conditions. Nine species exhibited CO2 response curves typical of C4 plants, but differed markedly in photosynthetic capacity. Light-saturated CO2 uptake rates ranged from 48 to 52 mol m-2 s-1 in arid habitat species to 18 to 20 mol m-2 s-1 in mesic and wet forest species. Two possessed unusual CO2 response curves in which photosynthesis was not saturated above intercellular CO2 pressures [p(CO2)] of 10 to 15 Pa, as typically occurs in C4 plants.Both leaf (g1) and mesophyll (gm) conductances to CO2 varied widely between species. At an atmospheric p(CO2) of 32 Pa, g1 regulated intercellular p(CO2) at 12–15 Pa in most species, which supported nearly maximum CO2 uptake rates, but did not result in excessive transpiration. Intercellular p(CO2) was higher in the two species with unusual CO2 response curves. This was especially apparent in E. remyi, which is native to a bog habitat. The regulation of g1 and intercellular p(CO2) yielded high photosynthetic water use efficiencies (P/E) in the species with typical CO2 response curves, whereas P/E was much lower in E. remyi.Photosynthetic capacity was closely related to leaf nitrogen content, whereas correlations with leaf morphological characteristics and leaf cell surface area were not significant. Thus, differences in photosynthetic capacity may be determined primarily by investment in the biochemical components of the photosynthetic apparatus rather than by differences in diffusion limitations. The lower photosynthetic capacities in the wet habitat species may reflect the lower light availability. However, other factors, such as reduced nutrient availability, may also be important.  相似文献   

6.
C4 plants contribute ≈ 20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We carried out a literature review (1980–97) and meta-analysis in order to identify emerging patterns of C4 grass responses to elevated CO2, as compared with those of C3 grasses. The focus was on nondomesticated Poaceae alone, to the exclusion of C4 dicotyledonous and C4 crop species. This provides a clear test, controlled for genotypic variability at family level, of differences between the CO2-responsiveness of these functional types. Eleven responses were considered, ranging from physiological behaviour at the leaf level to carbon allocation patterns at the whole plant level. Results were also assessed in the context of environmental stress conditions (light, temperature, water and nutrient stress), and experimental growing conditions (pot size, experimental duration and fumigation method). Both C4 and C3 species increased total biomass significantly in elevated CO2, by 33% and 44%, respectively. Differing tendencies between types in shoot structural response were revealed: C3 species showed a greater increase in tillering, whereas C4 species showed a greater increase in leaf area in elevated CO2. At the leaf level, significant stomatal closure and increased leaf water use efficiency were confirmed in both types, and higher carbon assimilation rates were found in both C3 and C4 species (33% and 25%, respectively). Environmental stress did not alter the C4 CO2-response, except for the loss of a significant positive CO2-response for above-ground biomass and leaf area under water stress. In C3 species, stimulation of carbon assimilation rate was reduced by stress (overall), and nutrient stress tended to reduce the mean biomass response to elevated CO2. Leaf carbohydrate status increased and leaf nitrogen concentration decreased significantly in elevated CO2 only in C3 species. We conclude that the relative responses of the C4 and C3 photosynthetic types to elevated CO2 concur only to some extent with expectations based on photosynthetic theory. The significant positive responses of C4 grass species at both the leaf and the whole plant level demand a re-evaluation of the assumption of low responsiveness in C4 plants at both levels, and not only with regard to water relations. The combined shoot structural and water use efficiency responses of these functional types will have consequential implications for the water balance of important catchments and range-lands throughout the world, especially in semiarid subtropical and temperate regions. It may be premature to predict that C4 grass species will lose their competitive advantage over C3 grass species in elevated CO2.  相似文献   

7.
Measurements of leaf gas exchange were conducted in situ for the C3-C4 intermediate plant Flaveria floridana. Leaves exhibited measurable CO2 assimilation at atmospheric CO2 concentrations as low as 20 μmol/mol. This result demonstrates that the low CO2 compensation points observed in past studies of greenhouse-grown C3-C4 intermediate plants also exist in plants growing in their natural habitat. Photosynthesis rates in F. floridana were near their maximum at intercellular CO2 concentrations as low as 112 μmol/mol. The existence of near-maximum photosynthesis rates at such low intercellular CO2 concentrations is interpreted as evidence for the existence of a CO2-concentrating mechanism in F. floridana. Such a mechanism would also explain the observed lack of response in photosynthesis rates to reductions in stomatal conductance and intercellular CO2 concentration as the leaf-to-air water vapor concentration gradient is increased. Photosynthetic rates were relatively high at leaf temperatures between 35 and 40 C, compared to most C3 plants. At midday during May, when leaf temperatures were between 35 and 42 C, F. floridana leaves exhibited photosynthesis rates that were four times higher than a sympatric C3 species (Eustoma exaltatum) of similar growth form and ecological habit. The high photosynthesis rates at high leaf temperatures in F. floridana were not due to higher leaf nitrogen contents, but rather to its reduced rate of photorespiration. These results confirm that C3-C4 intermediate photosynthesis can provide plants with an advantage at high leaf temperatures, compared to C3 plants.  相似文献   

8.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

9.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

10.
A Comparison of Dark Respiration between C(3) and C(4) Plants   总被引:2,自引:2,他引:0       下载免费PDF全文
Byrd GT  Sage RF  Brown RH 《Plant physiology》1992,100(1):191-198
Lower respiratory costs were hypothesized as providing an additional benefit in C4 plants compared to C3 plants due to less investment in proteins in C4 leaves. Therefore, photosynthesis and dark respiration of mature leaves were compared between a number of C4 and C3 species. Although photosynthetic rates were generally greater in C4 when compared to C3 species, no differences were found in dark respiration rates of individual leaves at either the beginning or after 16 h of the dark period. The effects of nitrogen on photosynthesis and respiration of individual leaves and whole plants were also investigated in two species that occupy similar habitats, Amaranthus retroflexus (C4) and Chenopodium album (C3). For mature leaves of both species, there was no relationship between leaf nitrogen and leaf respiration, with leaves of both species exhibiting a similar rate of decline after 16 h of darkness. In contrast, leaf photosynthesis increased with increasing leaf nitrogen in both species, with the C4 species displaying a greater photosynthetic response to leaf nitrogen. For whole plants of both species grown at different nitrogen levels, there was a clear linear relationship between net CO2 uptake and CO2 efflux in the dark. The dependence of nightly CO2 efflux on CO2 uptake was similar for both species, although the response of CO2 uptake to leaf nitrogen was much steeper in the C4 species, Amaranthus retroflexus. Rates of growth and maintenance respiration by whole plants of both species were similar, with both species displaying higher rates at higher leaf nitrogen. There were no significant differences in leaf or whole plant maintenance respiration between species at any temperature between 18 and 42°C. The data suggest no obvious differences in respiratory costs in C4 and C3 plants.  相似文献   

11.
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred. Received: 3 July 1997 / Accepted: 3 December 1997  相似文献   

12.
Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and reproduction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent reproduction. Previous predictions regarding the effects of high and low pCO2 on C3 plants have rarely considered the effects of evolution. Knowledge of the potential for evolution of C3 plants in response to CO2 is important for predicting the degree to which plants may sequester atmospheric CO2 in the future, and for understanding how plants may have functioned in response to low pCO2 during the Pleistocene. Therefore, three studies using Arabidopsis thaliana as a model system for C3 annuals were conducted: (1) a selection experiment to measure responses to selection for high seed number (a major component of fitness) at Pleistocene (20 Pa) and future (70 Pa) pCO2 and to determine changes in development rate and biomass production during selection, (2) a growth experiment to determine if the effects of selection on final biomass were evident prior to reproduction, and (3) a reciprocal transplant experiment to test if pCO2 was a selective agent on Arabidopsis. Arabidopsis showed significant positive responses to selection for high seed number at both 20 and 70 Pa CO2 during the selection process. Furthermore, plants selected at 20 Pa CO2 performed better than plants selected at 70 Pa CO2 under low CO2 conditions, indicating that low CO2 acted as a selective agent on these annuals. However, plants selected at 70 Pa CO2 did not have significantly higher seed production than plants selected at 20 Pa CO2 when grown at high pCO2. Nevertheless, there was some evidence that high CO2 may also be a selective agent because changes in development rate and biomass production during selection occurred in opposite directions at low and high pCO2. Plants selected at high pCO2 showed no change or reductions in biomass relative to control plants due to a decrease in the length of the life cycle, as indicated by earlier initiation of flowering and senescence. In contrast, selection at low CO2 resulted in an average 35% increase in biomass production, due to an increase in the length of the life cycle that resulted in a longer period for biomass accumulation before senescence. From the Arabidopsis model system we conclude that some C3 annuals may have produced greater biomass in response to low pCO2 during the Pleistocene relative to what has been predicted from studies exposing a single generation of C3 plants to low pCO2. Furthermore, C3 annuals may exhibit evolutionary responses to high pCO2 in the future that may result in developmental changes, but these are unlikely to increase biomass production. This series of studies shows that CO2 may potentially act as a selective agent on C3 annuals, producing changes in development rate and carbon accumulation that could not have been predicted from single-generation studies. Received: 21 July 1999 / Accepted: 1 December 1999  相似文献   

13.
Atmospheric CO2 partial pressure may have been as low as 18 Pa during the Pleistocene and is expected to increase from 35 to 70 Pa before the end of the next century. Low CO2 reduces the growth and reproduction of C3 plants, whereas elevated CO2 often increases growth and reproduction. Plants at high elevation are exposed to reduced CO2 partial pressure and may be better adapted to the low CO2 of the Pleistocene. We examined genotypes of Arabidopsis thaliana from different elevations for variation in growth and reproduction at the CO2 levels of the Pleistocene, the present and the future. Genotypes exhibited limited genetic variation in the response of the production of biomass to changes in CO2, but showed significant variation in reproductive characters. We found evidence that plants from high elevations may be better adapted to low CO2 when considering seed number, which is an important component of fitness. Genotypes showed greater variation in the response of seed number between 35 and 20 Pa CO2 compared to 35 and 70 Pa CO2. We conclude that present-day C3 annuals may have greater potential for evolution in response to the low CO2 of the Pleistocene relative to the elevated CO2 predicted for the future.  相似文献   

14.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

15.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

16.

Background and Aims

The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.

Methods

Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.

Key Results

Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.

Conclusions

Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought.  相似文献   

17.
Continually rising atmospheric CO2 concentrations and possible climatic change may cause significant changes in plant communities. This study was undertaken to investigate gas exchange in two important grass species of the short-grass steppe, Pascopyrum smithii (western wheat-grass), C3, and Bouteloua gracilis (blue grama), C4, grown at different CO2 concentrations and temperatures. Intact soil cores containing each species were extracted from grasslands in north-eastern Colorado, USA, placed in growth chambers, and grown at combinations of two CO2 concentrations (350 and 700 μmol mol−1) and two temperature regimes (field average and elevated by 4°C). Leaf gas exchange was measured during the second, third and fourth growth seasons. All plants exhibited higher leaf CO2 assimilation rates (A) with increasing measurement CO2 concentration, with greater responses being observed in the cool-season C3 species P. smithii. Changes in the shape of intercellular CO2 response curves of A for both species indicated photosynthetic acclimation to the different growth environments. The photosynthetic capacity of P. smithii leaves tended to be reduced in plants grown at high CO2 concentrations, although A for plants grown and measured at 700μmol mol−1 CO2 was 41% greater than that in plants grown and measured at 350 μmol mol−1 CO2. Low leaf N concentration may have contributed to photosynthetic acclimation to CO2. A severe reduction in photosynthetic capacity was exhibited in P. smithii plants grown long-term at elevated temperatures. As a result, the potential response of photosynthesis to CO2 enrichment was reduced in P. smithii plants grown long-term at the higher temperature.  相似文献   

18.
Rising levels of atmospheric CO2 will have profound, direct effects on plant carbon metabolism. In this study we used gas exchange measurements, models describing the instantaneous response of leaf net CO2 assimilation rate (A) to intercellular CO2 partial pressure (Ci), in vitro enzyme activity assay, and carbohydrate assay in order to investigate the photosynthetic responses of wheat (Triticum aestivum L., cv. Wembley) to growth under elevated partial pressures of atmospheric CO2 (Ca). At flag leaf ligule emergence, the modelled, in vivo, maximum carboxylation velocity for RuBisCO was significantly lower in plants grown at elevated Ca than in plants grown at ambient Ca (70 Pa compared with 40 Pa). By 12 d after ligule emergence, no significant difference in this parameter was detectable. At ligule emergence, plants grown at elevated Ca exhibited reduced in vitro initial activities and activation states of RuBisCO. At their respective growth Ci values, the photosynthesis of 40-Pa-grown plants was sensitive to p(O2) and to p(CO2) whereas that of 70-Pa-grown plants was insensitive. Both sucrose and starch accumulated more rapidly in the leaves of plants grown at 70 Pa. At flag leaf ligule emergence, modelled non-photorespiratory respiration in the light (Rd) was significantly higher in 70-Pa-grown plants than in 40-Pa-grown plants. By 12 d after ligule emergence no significant differences in Rd were detectable.  相似文献   

19.
If long‐term responses of photosynthesis and leaf diffusive conductance to rising atmospheric carbon dioxide (CO2) levels are similar or predictably different among species, functional types, and ecosystem types, general global models of elevated CO2 effects can effectively be developed. To address this issue we measured gas exchange rates of 13 perennial grassland species from four functional groups across 11 years of long‐term free‐air CO2 enrichment (eCO2, +180 ppm above ambient CO2) in the BioCON experiment in Minnesota, USA. Eleven years of eCO2 produced consistent but modest increases in leaf net photosynthetic rates of 10% on average compared with plants grown at ambient CO2 concentrations across the 13 species. This eCO2‐induced enhancement did not depend on soil N treatment, is much less than the average across other longer‐term studies, and represents strong acclimation (i.e. downregulation) as it is also much less than the instantaneous response to eCO2. The legume and C3 nonlegume forb species were the most responsive among the functional groups (+13% in each), the C4 grasses the least responsive (+4%), and C3 grasses intermediate in their photosynthetic response to eCO2 across years (+9%). Leaf stomatal conductance and nitrogen content declined comparably across species in eCO2 compared with ambient CO2 and to degrees corresponding to results from other studies. The significant acclimation of photosynthesis is explained in part by those eCO2‐induced decreases in leaf N content and stomatal conductance that reduce leaf photosynthetic capacity in plants grown under elevated compared with ambient CO2 concentrations. Results of this study, probably the longest‐term with the most species, suggest that carbon cycle models that assume and thereby simulate long‐lived strong eCO2 stimulation of photosynthesis (e.g.> 25%) for all of Earth's terrestrial ecosystems should be viewed with a great deal of caution.  相似文献   

20.
Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号