首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of overarm throws, constrained to the parasagittal plane, were simulated using a muscle model actuated two-segment model representing the forearm and hand plus projectile. The parameters defining the modeled muscles and the anthropometry of the two-segment models were specific to the two young male subjects. All simulations commenced from a position of full elbow flexion and full wrist extension. The study was designed to elucidate the optimal inter-muscular coordination strategies for throwing projectiles to achieve maximum range, as well as maximum projectile kinetic energy for a variety of projectile masses. A proximal to distal (PD) sequence of muscle activations was seen in many of the simulated throws but not all. Under certain conditions moment reversal produced a longer throw and greater projectile energy, and deactivation of the muscles resulted in increased projectile energy. Therefore, simple timing of muscle activation does not fully describe the patterns of muscle recruitment which can produce optimal throws. The models of the two subjects required different timings of muscle activations, and for some of the tasks used different coordination patterns. Optimal strategies were found to vary with the mass of the projectile, the anthropometry and the muscle characteristics of the subjects modeled. The tasks examined were relatively simple, but basic rules for coordinating these tasks were not evident.  相似文献   

2.
The aim of this study was to investigate the number of sarcomeres of different regions (proximal, intermediate and distal third) of the M. gastrocnemius of the rat and compare them with in vivo measurements of the length of the most proximal and distal muscle bundles. These lengths were measured with the aid of dividers at the muscle resting length. The number of sarcomeres was calculated from the length of fibres (measured at 20 times enlargement) tested from HNO3-treated muscle and the average sarcomere length (determined from 80 microns samples taken along the fibres every 800 microns). Ten fibres were isolated from each of three regions of six muscles. All muscles showed the smallest number of sarcomeres in the proximal region of the muscle and increasingly higher numbers in the intermediate and distal parts. The number of sarcomeres in the proximal region is significantly (p less than 0.01) smaller than that of the distal region. These results agree with the results of in vivo length measurements of the most proximal and distal bundles (resp. 31 and 36% of the muscle resting length), the former being significantly (p less than .01) smaller. As there is no significant difference (p less than 0.01) in the length of the treated fibres of the three regions it is concluded that HNO3 treatment does affect the fibres of the muscle in the different regions in a non uniform fashion.  相似文献   

3.
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.  相似文献   

4.
The force produced by cat muscles over time with two stimuli separated by a short interval is approximately three times that produced by a twitch of cat muscles. This facilitation of force production by a second stimulus involves both increases in magnitude and duration of the contraction. Increased magnitude is relatively more important in the fast-twitch plantaris muscle, whereas increased duration is more important in the slow-twitch soleus muscle. The facilitation decays in an approximately exponential manner with the interval between stimuli, having a time constant between one and two times the twitch contraction time in different muscles. If a third stimulus is added, the greatest facilitation is seen at intervals longer than the twitch contraction time. The drug Dantrolene, which specifically reduces Ca++ release from the sarcoplasmic reticulum, eliminates the delayed peak in facilitation with three stimuli. Associated with the increases in force with one or more stimuli are increases in muscle stiffness, which can be measured with small, brief stretches and releases that do not alter the time- course of contraction. The stiffness of soleus muscle reaches a peak after the peak in force. The increasing stiffness of the muscle can considerably facilitate transmission of force generated internally, in addition to any facilitation arising from Ca++-release mechanisms.  相似文献   

5.
How does body size determine the locomotor performance and proportions of leapers? In an analysis of the mechanics of leaping we derived two principles that explain the kinematic and morphological differences between leaping prosimian primates of different body size. 1. In small animals, the distance through which the body can be accelerated during take-off, and the time available for acceleration, are short. In small-bodied leapers we therefore find adaptations that increase the distance or length of time for propulsion and maximize speed. These are: great angular excursions at the joints of the hindlimb, long load arms of body weight and short power arms for the muscles, elongated hindlimbs with a disproportionate lengthening of the distal segments, and additional joints in the tarsus. 2. With increasing body size, the time for accelerating the body is no longer a problem. Instead, the ratio of muscle force available for acceleration to mass to be accelerated is unfavorable. Accordingly, large-bodied leapers have adaptations that allow optimal use of available muscle force. These include: acceleration in energetically profitable joint positions, avoidance of acute joint angles especially at the distal joints (where the muscles work against the highest percentage of body mass), only moderate elongation of the hindlimbs with rather short distal segments, and long lever arms of those muscles that extend the hindlimb joints. In addition, take-offs of the larger-bodied leapers are characterized by a regularly occurring arm swing movement, thus making additional use of nonhindlimb muscles for acceleration. The mass-dependent differences in forces and velocities have consequences for the energy budget. As the muscles of the small species must contract very rapidly against high loads, they consume more energy per unit of mechanical work. It is not possible to optimize speed and force in the same animal. Body size in conjunction with the laws of mechanics determines how maximum leaping potential will be realized.  相似文献   

6.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

7.
The Sterkfontein hand bones, attributed to Australopithecus africanus, were analysed to determine potential hand function of the power grip type of this species. The metacarpus is as stable as that of modern humans, as indicated by the depth of the groove on the base of metacarpal 2, the styloid process of metacarpal 3, the base articular surface areas, and the ligament markings on the bases of the metacarpals. The flexion and rotation of metacarpal 5 might have been less than that of modern humans, due to a more marked ventral articular lip on the base. The metacarpus acts as a lever, acting in various planes. The extensor carpi ulnaris and extensor carpi radialis longus muscles were probably better developed than in modern humans. The extensor carpi radialis brevis and flexor carpi radialis muscles would probably have been as well developed as in modern humans. None of the long tendons have a mechanical disadvantage as compared to modern humans. The metacarpals have a high robusticity index. The proximal phalanges show some midshaft swelling, slightly greater curvature than in modern humans, and some side to side bowing: pongid features. The fibrous flexor sheath markings are well developed, but resemble those of modern humans rather than those of the pongids. A single middle phalanx resembles that of modern humans, and has well developed ridges for insertion of the flexor digitorum superficialis muscle. The distal phalanx of the thumb has a well developed region for insertion of the flexor pollicis longus muscle, and has a mechanical advantage over modern humans for action of this muscle at the interphalangeal joint. The features indicate that the hand of A. africanus was well adapted to powerful hand use, as in hammering, striking, chopping, scraping, and gouging actions, as well as for throwing and climbing activities.  相似文献   

8.
THE limb muscles of mammals such as the cat and rat can be divided into the fast-twitch muscles and the slow-twitch muscles. While the absolute contraction speeds vary from species to species the isometric twitch time (the time taken from the start of contraction until the instant of peak tension development) of a slow-twitch muscle is always about three times longer than the isometric twitch time of a fast-twitch muscle. Thus, at 37° C, the isometric twitch time of cat soleus muscle (a slow-twitch muscle) is approximately 70 ms while the isometric twitch time of the flexor hallucis longus muscle (a fast-twitch muscle) is approximately 20 ms. In the rat, the contraction times of the corresponding muscles would be of the order of 36 ms and 12 ms respectively.  相似文献   

9.
The relationship between the force of a single twitch of the medial gastrocnemius muscle of the rat and contraction and half-relaxation times, on one hand, and the load of the muscle on the other, was studied. Twitches of the whole muscle and its individual motor units were induced. The optimal load, at which the majority of motor units reached the greatest twitch force, was 10 G. Mean optimal loads for twitches of different types of motor units were very similar. Slow motor units reached a slightly greater twitch force at greater loads (12.5 G) than at 10 G. However, the optimal load for the twitch of the whole muscle was much greater. It was 47 G on the average. The contraction and half-relaxation times of motor units, as well as of the whole muscle, became longer as the force stretching the muscle increased. Half-relaxation time changed more rapidly than contraction time. Both parameters were undergoing the greatest changes in slow motor units.  相似文献   

10.
Effects of vibration on arm and shoulder muscles in three body postures   总被引:1,自引:0,他引:1  
The electromyographic responses of arm and shoulder muscles to vibrations were studied in three postures similar to the postures of drilling in a ceiling, drilling in a wall and drilling in a floor. This experiment was performed within the defined parameters of: vibrational frequency at 30 Hz, acceleration level 40 m.s-2 (rms), pushing force expressed as percentage maximal voluntary contraction, and gripping force which was set at 100 N. The exposure time for each test was 5 min. The general findings from these three body postures show that all the examined muscles were affected by exposure to vibration. The EMG index increased as follows: trapezius muscle 39% (p less than 0.05), lower-arm flexor muscles 23% (p less than 0.05), infraspinatus muscle 14% (p less than 0.05), lower-arm extensor muscles 14% (p less than 0.1) and biceps muscle 6% (p less than 0.1). The muscle most affected by vibration was found to be the trapezius muscle. It should be taken into consideration that vibration can be a contributing factor in neck/shoulder disorders among power handtool operators. The general conclusion from this study is that changes in working posture give different transmissions of vibration in the upper extremities. It seems as if the prime movers and muscles with an increased muscle length or increased degree of contraction are most affected by vibration.  相似文献   

11.
Spontaneous and electrically-elicited motor activity was recorded by triple organ bath in rat segment-model preparation as display of excitation of local nerve networks and ascending or descending reflex pathways underlying contractile potency and functional coordination of colonic longitudinal and circular muscles. Spontaneous high-amplitude contractions, but not relaxations, appeared synchronously in both muscles. Electrical field stimulation applied to proximal or distal part of segments elicited both tetrodotoxin (0.1 microM)-sensitive local motor responses of the stimulated part and ascending or descending motor responses of the contralateral, nonstimulated part of the preparations. Contractions characterized the local response of longitudinal muscle. The circular muscle responded with relaxation followed by contraction. Synchronous ascending contractions and descending contraction of the longitudinal muscle and relaxation followed by contraction of the circular muscle were observed when the middle part of segments was stimulated, thus indicating that locally-induced nerve excitation propagated via intrinsic ascending or descending nerve pathways that could be synchronously coactivated by one and the same stimulus. The ascending motor responses were more pronounced and the motor responses of longitudinal muscle were expressed more than those of circular muscle suggesting an essential role of ascending reflex pathways and longitudinal muscle in the coordinated motor activity of colon.  相似文献   

12.
Postsynaptic potentials evoked by stimulation of the motor cortex or pyramids before and after acute pyramidotomy were investigated in the lumbar motoneurons of monkeys. In response to activation of fibers of the pyramidal tract monosynaptic EPSPs predominated in motoneurons innervating the distal muscles of the hind limbs. Monosynaptic EPSPs in the motoneurons of the distal muscles had a significantly higher amplitude and could be evoked by weaker stimuli than EPSPs in the motoneurons of the proximal muscles. Cortico-motoneuronal EPSPs in the motoneurons of the distal muscles had a less marked frequency potentiation than EPSPs with monosynaptic segmental delay in the motoneurons of the proximal muscles. Cortico-extrapyramidal synaptic responses appeared in the pyramidotomized monkeys during intensive repetitive stimulation of the motor cortex in motoneurons of both distal and proximal muscles. These effects, transmitted by descending projections of the brain stem, may be responsible for the partial preservation of cortical motor control after pyramidotomy.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 587–596, November–December, 1972.  相似文献   

13.
The interaction between contractile force and in-series compliance was investigated for the intact skeletal muscle-tendon unit (MTU) of Rana pipiens semitendinosus muscles during fixed-end contraction. It was hypothesized that internal sarcomere shortening is a function of the length-force characteristics of contractile and series elastic components. The MTUs (n=18) were dissected, and, while submerged in Ringer's solution, muscles were activated at nine muscle lengths (-2 to +6 mm relative to optimal length in 1 mm intervals), while measuring muscle force and sarcomere length (SL) by laser diffraction. The MTU was clamped either at the bone (n=6), or at the proximal and distal ends of the aponeuroses (n=6). Muscle fibers were also trimmed along with aponeuroses down to 5-20 fibers and identical measurements were performed (n=6). The magnitude of shortening decreased as MTU length increased. The magnitude of shortening ranged from -0.08 to 0.3 microm, and there was no significant difference between delta SL as a function of clamp location. When aponeuroses were trimmed, sarcomere shortening was not observed at L(0) and longer. These results suggest that the aponeurosis is the major contributor to in-series compliance. Results also support our hypothesis but there also appear to be other factors affecting internal sarcomere shortening. The functional consequence of internal sarcomere shortening as a function of sarcomere length was to skew the muscle length-tension relationship to longer sarcomere lengths.  相似文献   

14.
An overarm throw in the sagittal plane was simulated using a three-segment model representing the upper arm, forearm and hand plus ball. Torque inputs at each joint were turned on at systematically varied times and maintained constant once initiated. All simulations began from identical initial conditions. The aim was to determine the sequence of onset of joint torques which gave the maximal range which the ball would travel and the maximal velocity of the ball irrespective of direction. Best throws proved to be sequential in that joint torques were turned on in a proximal to distal (P-D) temporal sequence. The P-D sequence was also demonstrated by time of peak joint angular velocities. The P-D sequence also proved to be best when segmental constants and joint torques were changed. As this sequence is a common feature of skilled throwing and striking, it is concluded that the linked segmental nature of the limb, irrespective of normal muscle characteristics, primarily predisposes the system to the use of a P-D sequence. The algebraic sign of the shoulder and elbow torques was reversed instantaneously to represent the use of antagonistic muscles. This led to increased output if performed late in the throw and in a P-D sequence. It is concluded that the use of antagonism leads to beneficial redistributions of angular velocity amongst limb segments.  相似文献   

15.
The electrically evoked and voluntary contractile properties of the first dorsal interosseous muscle were measured on both hands in 10 healthy adults. The force of abduction of the index finger interosseous muscle was measured using a transducer resting against the lateral side of the proximal interphalangeal joint. The mean values of time to peak tension measured on the dominant hands were significantly slower than the values on the non-dominant hands (P less than 0.01) in a paired t-test. Maximal tetanic tension, maximal voluntary contraction strength, and maximal twitch tension are not significantly different. Fatigue indices on the dominant hands in each subject were higher than those on the non-dominant hands. The correlation coefficient between fatigue indices on the dominant and the non-dominant hand was 0.92 (P less than 0.01).  相似文献   

16.
The pattern given by contracting frog muscle can be followed with high time resolution using synchrotron radiation as a high-intensity X-ray source. We have studied the behaviour of the second actin layer-line (axial spacing of approximately 179 A) at an off-meridional spacing of approximately 0.023 A-1, a region of the diagram that is sensitive to the position of tropomyosin in the thin filaments. In confirmation of earlier work, we find that there is a substantial increase in the intensity of this part of the pattern during contraction. We find that the reflection reaches half its final intensity about 17 milliseconds after the stimulus at 6 degrees C. The changes in the equatorial reflections, which arise from movement of crossbridges towards the thin filaments, occur with a delay of about 12 to 17 milliseconds relative to this change in the actin pattern. In over-stretched muscle, where thick and thin filaments no longer overlap, the changes in the actin second layer-line still take place upon stimulation with a time course and intensity similar to that observed at full overlap. This indicates that tropomyosin movement, in response to calcium binding to troponin, is the first structural step in muscular contraction, and is the prerequisite for myosin binding. A change in intensity similar to that found in contracting muscle is seen in rigor, where tropomyosin is probably locked in the active position. During relaxation the earlier stages in the decrease in intensity of the second actin layer-line take place significantly sooner after the last stimulus than tension decay. In over-stretched muscles the intensity decay is appreciably faster than in the same muscles at rest length, where attached crossbridges may interfere with the return of tropomyosin to its resting position.  相似文献   

17.
Women are capable of longer endurance times compared with men for contractions performed at low to moderate intensities. The purpose of the study was 1) to determine the relation between the absolute target force and endurance time for a submaximal isometric contraction and 2) to compare the pressor response and muscle activation patterns of men [26.3 +/- 1.1 (SE) yr] and women (27.5 +/- 2.3 yr) during a fatiguing contraction performed with the elbow flexor muscles. Maximal voluntary contraction (MVC) force was greater for men (393 +/- 23 vs. 177 +/- 7 N), which meant that the average target force (20% of MVC) was greater for men (79.7 +/- 6.5 vs. 36.7 +/- 2.0 N). The endurance time for the fatiguing contractions was 118% longer for women (1,806 +/- 239 vs. 829 +/- 94 s). The average of the rectified electromyogram (%MVC) for the elbow flexor muscles at exhaustion was similar for men (31 +/- 2%) and women (30 +/- 2%). In contrast, the heart rate and mean arterial pressure (MAP) were less at exhaustion for women (94 +/- 6 vs. 111 +/- 7 beats/min and 121 +/- 5 vs. 150 +/- 6 mmHg, respectively). The target force and change in MAP during the fatiguing contraction were exponentially related to endurance time (r(2) = 0.68 and r(2) = 0.64, respectively), whereas the change in MAP was linearly related to target force (r(2) = 0.51). The difference in fatigability of men and women when performing a submaximal contraction was related to the absolute contraction intensity and was limited by mechanisms that were distal to the activation of muscle.  相似文献   

18.
Although the mechanism by which vascular delay benefits skin flaps is not completely understood, this topic has been extensively studied and reported on in the literature. In contrast, little has been documented about the effects of vascular delay in skeletal muscle flaps. Recent animal studies tested the effectiveness of vascular delay to enhance latissimus dorsi muscle flap viability for use in cardiomyoplasty and found that it prevented distal flap necrosis. However, these studies did not define the optimal time period necessary to achieve this beneficial effect. The purpose of this study was to determine how many days of "delay" can elicit the beneficial effects of vascular delay on latissimus dorsi muscle flaps. To accomplish this, 90 latissimus dorsi muscles of 45 male Sprague-Dawley rats were randomly subjected to vascular delay on one side or a sham procedure on the other. After predetermined delay periods (0, 3, 7, 10, and 14 days) or a sham procedure, all latissimus dorsi muscles were elevated as single pedicled flaps based only on their thoracodorsal neurovascular pedicle. Latissimus dorsi muscle perfusion was measured using a Laser Doppler Perfusion Imager just before and immediately after flap elevation. The muscles were then returned to their original vascular beds, isolated from adjacent tissue with Silastic film, sutured into place to maintain their original size and shape, and left there for 5 days. After 5 days, the latissimus dorsi muscle flaps were dissected free, scanned again (Laser Doppler Perfusion Imager-perfusion measurements), and the area of distal necrosis was measured using digitized planimetry of magnified images. The authors' results showed that delay periods of 3, 7, 10, and 14 days significantly increased (p < 0.05) blood perfusion and decreased (p < 0.05) distal flap necrosis when compared with sham controls. On the basis of these findings, the authors conclude that in their rat latissimus dorsi muscle flap model the beneficial effects of vascular delay are present as early as 3 days. If these findings also hold true in humans, they could be useful in cardiomyoplasty by allowing surgeons to shorten the amount of time between the vascular delay procedure and the cardiomyoplasty procedure in these very sick patients.  相似文献   

19.
Locomotion arises from the complex and coordinated function of limb muscles. Yet muscle function is dynamic over the course of a single stride and between strides for animals moving at different speeds or on variable terrain. While it is clear that motor unit recruitment can vary between and within muscles, we know little about how work is distributed within and between muscles under in vivo conditions. Here we show that the lateral gastrocnemius (LG) of helmeted guinea fowl (Numida meleagris) performs considerably more work than its synergist, the medial gastrocnemius (MG) and that the proximal region of the MG (pMG) performs more work than the distal region (dMG). Positive work done by the LG was approximately twice that of the proximal MG when the birds walked at 0.5 ms -1, and four times when running at 2.0 m s-1. This is probably due to different moments at the knee, as well as differences in motor unit recruitment. The dMG performed less work than the pMG because its apparent dynamic stiffness was greater, and because it exhibited a greater recruitment of slow-twitch fibres. The greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which increases with changes in gait and speed.  相似文献   

20.
The mechanism of onset of rebound after inhibition induced by electrical stimulation of a nerve of maximal and submaximal strength for M-response was studied in single motor units of normal human soleus, rectus femoris, and hand muscles. Poststimulus histograms and changes in the duration of interspike intervals were compared with mechanical recordings of muscle contractions. In all muscles tested, during strong isotonic contraction, the increase in motor unit activity after a silent period was partly due to synchronization of their emergence from inhibition. However, it also contained a component of true facilitation of motoneurons, which was evidently a reflex response to lengthening of the muscle in the relaxation phase after evoked contraction. The latent period of this facilitation in the soleus and rectus femoris muscles coincided in value with the latent period of the monosynaptic spinal reflex, whereas in the hand muscles, in which a monosynaptic response to electrical nerve stimulation could not be evoked, the latent period of facilitation as a result of spindle activation during muscle relaxation was significantly longer than the latent period of the monosynaptic reflex. These findings support the hypothesis of presynaptic suppression of monosynaptic connections of Ia afferents with the motoneurons of some human muscles by descending tonic influences and of the use of information coming from spindles by supraspinal levels of the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号