首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(23S)-25-Dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) functions an antagonist of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells [J. Biol. Chem. 274 (1999) 16392]. We examined the effect of vitamin D antagonist, TEI-9647, on osteoclast formation induced by 1alpha,25-(OH)(2)D(3) from bone marrow cells of patients with Paget's disease. TEI-9647 itself never induced osteoclast formation even at 10(-6)M, but dose-dependently (10(-10) to 10(-6)M) inhibited osteoclast formation induced by physiologic concentrations of 1alpha,25-(OH)(2)D(3) (41 pg/ml, 10(-10)M) from bone marrow cells of patients with Paget's disease. At the same time, 10(-8)M of TEI-9647 alone did not cause 1alpha,25-(OH)(2)D(3) dependent gene expression, but almost completely suppressed TAF(II)-17, a potential coactivator of VDR and 25-hydroxyvitamin D(3)-24-hydroxylase (25-OH-D(3)-24-hydroxylase) gene expression induced by 10(-10)M 1alpha,25-(OH)(2)D(3) in bone marrow cells of patients with Paget's disease. Moreover, TEI-9647 dose-dependently inhibited bone resorption induced by 10(-9)M 1alpha,25-(OH)(2)D(3) by osteoclasts produced by RANKL and M-CSF treatment of measles virus nucleocapsid gene transduced bone marrow cells. These results suggest that TEI-9647 acts directly on osteoclast precursors and osteoclasts, and that TEI-9647 may be a novel agent to suppress the excessive bone resorption and osteoclast formation in patients with Paget's disease.  相似文献   

2.
Basic fibroblast growth factor (bFGF) induced osteoclast formation in co-cultures of mouse spleen cells and osteoblasts. Osteoclastogenesis inhibitory factor (OCIF) and a selective cyclooxygenase-2 (COX-2) inhibitor, NS-398, abolished bFGF-induced osteoclast formation. bFGF did not affect spleen cells, but it did affect osteoblasts, to stimulate osteoclast formation. Northern blot analysis revealed that bFGF up-regulated the expression of osteoclast differentiation factor (ODF) and COX-2 and down-regulated the expression of OCIF in primary osteoblastic cells. NS-398 abolished the increase of ODF mRNA, but it had no effect on the decrease of OCIF mRNA. NS-398 suppressed the binding of (125)I-labeled OCIF to osteoblastic cells treated with bFGF. Enzyme-linked immunosorbent assay showed that bFGF inhibited OCIF production by osteoblastic cells, and the inhibition was not affected by NS-398. We conclude that bFGF induces osteoclast formation by stimulating ODF production through COX-2-mediated prostaglandin synthesis and by suppressing OCIF production through a mechanism independent of prostaglandin synthesis.  相似文献   

3.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

4.
Pretreatment of freshly isolated human peripheral blood monocytes with the steroid hormone, 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)D), markedly reduced (by 95%) productive infection of human monocytes by HIV-1. Equivalent concentrations (10nM) of 25-hydroxyvitamin D3 (25(OH)D), the biologic precursor of 1,25(OH)D, were ineffective at reducing either CD4 expression or HIV-1 production. Pretreatment was required for modulation of HIV-1 infection by 1,25(OH)D. Interestingly, 1,25(OH)D-mediated decreases in p24 antigen production were observed prior to any observed reduction in CD4 expression, suggesting that 1,25(OH)D treatment may modulate HIV-1 infection of monocytes through additional factors besides decreased HIV-1 binding. These data raise the possibility that 1,25(OH)D compounds may be important in host resistance to HIV-1.  相似文献   

5.
6.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

7.
Xie Z  Bikle DD 《Steroids》2001,66(3-5):339-345
Phospholipase C-gamma1 (PLC-gamma1) is the most abundant member of the phospholipase C family expressed in human keratinocytes. PLC-gamma1 is induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) in normal keratinocytes via a DR6-type vitamin D responsive element. This regulation is not observed in transformed keratinocytes. The role of PLC-gamma1 in mediating 1alpha,25(OH)(2)D(3) and calcium-regulated differentiation was then tested. Both specific PLC inhibitors and antisense constructs which selectively block PLC-gamma1 production prevented 1alpha,25(OH)(2)D(3) and calcium from inducing markers of differentiation such as involucrin and transglutaminase. These studies demonstrate that PLC-gamma1 induction by 1alpha,25(OH)(2)D(3) is critical to the ability of this hormone to regulate keratinocyte differentiation.  相似文献   

8.
The activity of renal 25-hydroxyvitamin D3(25-OH-D3)-1α- and 24-hydroxylase and the plasma concentrations of vitamin D metabolites were investigated in relation to the ovulatory cycle in egg-laying hens. The time after ovulation was estimated from the position of the egg in the oviduct and the dry weight of the egg-shell. The invitro renal 25-OH-D3-1α-hydroxylase activity was significantly enhanced 14–16 hr after ovulation, whereas 25-OH-D3-24-hydroxylase activity remained unchanged. The plasma level of 1α,25-dihydroxyvitamin D [1α,25-(OH)2-D] was also increased 14–16 hr after ovulation in accord with the enhancement of the renal 1α-hydroxylase activity. The plasma level of 24,25-dihydroxyvitamin D did not change during the ovulatory cycle. These results strongly suggest that 1α,25-(OH)2-D3 production in the kidney varies in a circadian rhythm during the ovulatory cycle in egg-laying hens.  相似文献   

9.
The human fibroblast growth factor 23 (hFGF23) and its autosomal dominant hypophosphatemic rickets (ADHR) mutant genes were incorporated into animals by naked DNA injection to investigate the action on phosphate homeostasis in vivo. The hFGF23 mutants (R176Q, R179Q, and R179W) markedly reduced serum phosphorus (6.2-6.9 mg/dl) compared with the plasmid MOCK (8.5 mg/dl). However, native hFGF23 did not affect serum phosphorus (8.6 mg/dl). Both hFGF23 and hFGF23R179Q mRNAs were expressed more than 100-fold in the liver 4 days after injection, however, the C-terminal portion of hFGF23 was detected only in the serum from hFGF23R179Q-injected animals (1109 pg/ml). hFGF23R179Q mutant was secreted as a 32-kDa protein, whereas, native hFGF23 was detected as a 20-kDa protein in the cell-conditioned media. These results suggest the hFGF23R179Q protein is resistant to intracellular proteolytic processing. The hFGF23R179Q suppressed Na/P(i) co-transport activities both in kidney and in small intestine by 45 and 30%, respectively, as well as serum 1alpha,25-dihydroxyvitamin D(3) to less than 15 pg/ml. However, it had little effect on serum parathyroid hormone (PTH). Infusion of hFGF23R179Q protein normalized serum phosphorus in thyroparathyroidectomized rats without affecting serum calcium. Taken together, the FGF23 mutants reduce both phosphate uptake in intestine and phosphate reabsorption in kidney, independent of PTH action.  相似文献   

10.
11.
We investigated the effect of 1 alpha,25-dihydroxyvitamin D3 (1,25 (OH)2 vit D3) on the 3H-thymidine uptake by Balb/c 3T3 cells and by human skin fibroblasts stimulated by normal human serum or by purified PDGF. We found an inhibitory effect of 1,25 (OH)2 vit D3 on the DNA synthesis of Balb/c 3T3 cells grown in the presence of human serum as well as in the presence of PDGF. At 5% human serum this effect is minimal at 10(-12) M 1,25 (OH)2 vit D3 and is maximal at 10(-9) M. On the DNA synthesis of human fibroblasts stimulated by human serum or by PDGF a modulatory effect of 1,25 (OH)2 vit D3 was shown. On these cells the vitamin had a stimulatory effect between 10(-11) and 10(-9) M and an inhibitory effect at very high concentrations (10(-7) M). Our results suggested that the effect of 1,25 (OH)2 vit D3 on fibroblast DNA synthesis could be mediated by interactions with its specific intracellular receptor. 1,25 (OH)2 vit D3 had no any action on the growth of human fibroblasts stimulated by fibroblast growth factor.  相似文献   

12.
The present study was carried out in order to elucidate the metabolic pathway from 1 alpha,25-(OH)2D3 to 1 alpha,25-(OH)2D3-26,23-lactone. For that purpose, we stereospecifically synthesized the vitamin D3 derivatives 1 alpha,23(S),25-(OH)3D3, 1 alpha,23(S),25(R),26-tetrahydroxyvitamin D3, and 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-lactol. The in vitro metabolism of these compounds was examined in kidney homogenates and intestinal mucosa homogenates from 1 alpha,25-(OH)2D3-supplemented chicks. The naturally occurring 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was produced (in increasing amounts) from 1 alpha,25-(OH)2D3, 1 alpha,25(R),26-(OH)3D3, 1 alpha,23(S),25-(OH),D3, 1 alpha,23(S),25(R),26-(OH)4D3, and 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol. These results indicated that there are two possible metabolic pathways from 1 alpha,25-(OH)2D3 to 1 alpha,23(S),25(R),26-(OH)4D3: the major one is by way of 1 alpha,23(S),25-(OH)3D3 and the minor one is by way of 1 alpha,25(R),26-(OH)3D3. 1 alpha,23(S),25(R),26-Tetrahydroxyvitamin D3 is further metabolized to 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone via 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactol. In the course of our studies, a new biosynthetic vitamin D3 metabolite was isolated in pure form. This metabolite was identified as 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol by UV spectrophotometry and mass spectrometry. Furthermore, we establish in this report that the lactonization of 1 alpha,23,25,26-(OH)4D3 and 1 alpha,25-(OH)2D3-26,23-lactol occurs in a stereo-retained and stereo-selective fashion.  相似文献   

13.
Novel vitamin D(3) analogs having a lactam structure in their side chains, 1 alpha,25-dihydroxyvitamin D(3)-26,23-lactams (DLAMs), were designed based on the principle of regulation of the folding of helix-12 in the vitamin D nuclear receptor (VDR). The new analogs were synthesized via 1,3-dipolar cycloaddition reaction and subsequent reduction of the isoxazolidine as key steps. Among the analogs, (23S,25S)-DLAM-01 (4a) and (23S,25S)-DLAM-1P (5a) bind strongly to VDR. Moreover, these analogs were found to inhibit the differentiation of HL-60 cells induced by 1 alpha,25-dihydroxyvitamin D(3).  相似文献   

14.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

15.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

16.
The effects of interleukin-4(IL-4) on the growth and differentiation of mouse myeloid leukemia M1 cells induced by various differentiation inducers were investigated. IL-4 alone did not have any significant effect on the growth or differentiation of M1 cells, but inhibited their differentiation induced by dexamethasone, D-factor/leukemia inhibitory factor, or interleukin 6. IL-4 also restored the proliferation of M1 cells after growth inhibition during their induction of differentiation by inducers. In contrast, IL-4 enhanced inhibition of growth and induction of differentiation of M1 cells by 1 alpha,25-dihydroxyvitamin D3. These results indicate that modulation of differentiation of M1 cells by IL-4 depends on the differentiation inducer.  相似文献   

17.
Regulation of erythroid differentiation by vitamin D3 derivatives was examined in Friend erythroleukemia cells. After Friend cells were cultured for 5 days with 1.5% dimethyl sulfoxide (DMSO), as much as 70% of the cells became benzidine-positive and the hemoglobin content increased in parallel with the increase of benzidine-positive cells. The DMSO-induced erythroid differentiation was markedly inhibited by concurrent addition of the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent in inhibiting DMSO-induced erythroid differentiation. 1 alpha,25(OH)2D3 alone was totally ineffective in both cell growth and erythroid differentiation. These results together with our previous reports indicate that 1 alpha,25(OH)2D3 is somehow involved not only in myeloid differentiation, but also in erythroid differentiation.  相似文献   

18.
A metabolite of vitamin D has been isolated in pure form from incubation of 25-hydroxyvitamin D3 with embryonic chick calvarial cells that had been grown on Cytodex 1 microcarrier beads. The isolation involved dichloromethane extraction of the cells and incubation medium, followed by Sephadex LH-20 column chromatography and high-performance liquid chromatography of the extract. The metabolite was identified as 1 alpha,25-dihydroxyvitamin D3 by means of ultraviolet absorption spectroscopy, mass spectrometry, and sensitivity to oxidation by periodate. This metabolite was not produced by cell-free medium or by cells from embryonic chick liver, skin, or heart. In conclusion, (1) kidney cells are not unique in having 25-hydroxyvitamin D3:1 alpha-hydroxylase activity as previously believed and (2) vitamin D target tissues such as the skeleton may play a direct role in mediating the metabolism of 25-hydroxyvitamin D3 to 1 alpha,25-dihydroxyvitamin D3, a vitamin D metabolite active at those sites.  相似文献   

19.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

20.
We previously reported that 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized into 1alpha,25-dihydroxy-3-epi-vitamin D(3) [1alpha,25(OH)(2)-3-epi-D(3)] in primary cultures of neonatal human keratinocytes. We now report that 1alpha,25(OH)(2)-3-epi-D(3) itself is further metabolized in human keratinocytes into several polar metabolites. One of the polar metabolite was unequivocally identified as 1alpha,23,25-trihydroxy-3-epi-vitamin D(3) by mass spectrometry and its sensitivity to sodium periodate. Three of the polar metabolites were identified as 1alpha,24,25-trihydroxy-3-epi-vitamin D(3), 1alpha,25-dihydroxy-24-oxo-3-epi-vitamin D(3) and 1alpha,23,25-trihydroxy-24-oxo-3-epi-vitamin D(3) by comigration with authentic standards on both straight and reverse phase HPLC systems. In addition to the polar metabolites, 1alpha,25(OH)(2)-3-epi-D(3) was also metabolized into two less polar metabolites. A possible structure of either 1alphaOH-3-epi-D(3)-20,25-cyclic ether or 1alphaOH-3-epi-D(3)-24,25-epoxide was assigned to one of the less polar metabolites through mass spectrometry. Thus, we indicate for the first time that 1alpha,25(OH)(2)-3-epi-D(3) is metabolized in neonatal human keratinocytes not only via the same C-24 and C-23 oxidation pathways like its parent, 1alpha,25(OH)(2)D(3); but also is metabolized into a less polar metabolite via a pathway that is unique to 1alpha,25(OH)(2)-3-epi-D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号