首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polychlorinated dibenzo-p-dioxins (PCDDs) are known as g environmental contaminants on account of the extreme toxicity. Among these compounds, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is regarded as the most toxic one. The extremely high toxicity of 2,3,7,8-TetraCDD is based on its high affinity for Ah receptor and nearly undetectable metabolism in mammalian body. Based on our previous studies, we assumed that enlarging the space of substrate-binding pocket of rat CYP1A1 might generate the catalytic activity toward 2,3,7,8-TetraCDD. Large-sized amino acid residues located at putative substrate-binding sites of rat CYP1A1 were substituted for alanine by site-directed mutagenesis. Among eight mutants examined, the mutant in the putative F-G loop, F240A, showed metabolic activity toward 2,3,7,8-TetraCDD. HPLC and GC-MS analyses strongly suggested that the metabolite was 8-hydroxy-2,3,7-TriCDD. Ah receptor assay revealed that the affinity of 8-hydroxy-2,3,7-TriCDD for Ah receptor was less than 0.01% of 2,3,7,8-TetraCDD, indicating that the F240A-dependent metabolism resulted in remarkable detoxification of 2,3,7,8-TetraCDD. The novel 2,3,7,8-TetraCDD-metabolizing enzyme could be applicable to bioremediation of contaminated soils with dioxin, elimination of dioxin from foods, and clinical treatment for people who accidentally take dioxin into their systems.  相似文献   

2.
Previous studies have shown that rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) show signs of toxicity that are similar to the responses of animals to a vitamin A-deficient diet. These include hypophagia, loss of body weight, loss of hepatic vitamin A, and accumulation of renal retinoids. Male Sprague-Dawley rats treated with 10, 30, or 100 nmol/kg of TCDD accumulated renal vitamin A, with retinyl palmitate concentrations reaching 8 times those of control animals, similar to that of male rats fed a vitamin A-free diet for 26 days. Acyl CoA:retinol acyltransferase (ACARAT) activities in both TCDD-treated rats and rats fed a vitamin A-free diet for 26 days were similarly elevated, and were strongly and positively correlated with the renal retinyl palmitate concentrations. Retinol concentrations in the kidneys of rats treated with TCDD or fed a vitamin A-free diet were only slightly elevated when compared to control rats. We suggest that accumulation of retinyl esters in the kidneys of rats treated with TCDD or fed a vitamin A-free diet occurs as a result of increased rates of retinol esterification.  相似文献   

3.
We have investigated the role of Vitamin A (retinoid) proteins in hepatic retinoid processing under normal conditions and during chemical stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical known to interfere with retinoid turnover and metabolism. Three separate studies were performed in wildtype control mice and transgenic mice that lack one or more isoforms of retinoic acid receptors (RAR), retinoid X receptors (RXR), or intracellular retinoid-binding proteins (CRABP I, CRABP II, CRBP I). Body and organ weight development was monitored from 2 weeks of age to adult, and hepatic levels of retinyl esters, retinol, and retinoic acid were investigated. In addition, hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid, a recently discovered retinoid metabolite that has proven sensitive to both TCDD exposure and Vitamin A status, were also determined. Mice absent in the three proteins CRBP I, CRABP I, and CRABP II (CI/CAI/CAII-/-) displayed significantly lower hepatic retinyl ester, retinol, and all-trans-retinoic acid levels compared to wildtype mice, whereas the liver concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid was considerably higher. After treatment with TCDD, hepatic total retinoids were almost entirely depleted in the CI/CAI/CAII-/- mice, whereas wildtype mice and mice lacking CRABP I, and CRABP II (CAI/CAII-/-) retained approximately 60-70% of their Vitamin A content compared to controls at 28 days. RAR and RXR knockout mice responded similarly to wildtype mice with respect to TCDD-induced retinoid disruption, with the exception of RXRbeta-/- mice which showed no decrease in hepatic Vitamin A concentration, suggesting that the role of RXRbeta in TCDD-induced retinoid disruption should be further investigated. Overall, the abnormal retinoid profile in the triple knockout mice (CI/CAI/CAII-/-), but not double knockout (CAI/CAII-/-) mice, suggests that a loss of CRBP I may account for the difference in retinoid profile in CI/CAI/CAII-/- mice, and is likely to result in an increased susceptibility to hepatic retinoid depletion following dioxin exposure.  相似文献   

4.
All-trans-retinoic acid (atRA) is incorporated covalently into proteins of rat testes mitochondria. In this study, the effect of three diets with different fatty acid composition on the retinoylation of proteins of rat testes mitochondria has been investigated. Different groups of rats were fed on a basal diet supplemented with 15% of either coconut oil (CO), olive oil (OO) or fish oil (FO). We found that, when compared with CO, the binding of retinoic acid was decreased in FO- and OO-fed rats. Mitochondrial phospholipids composition was differently influenced by dietary treatments; minor changes were observed in fatty acid composition of phospholipids. Few differences were observed in the Arrhenius plots among the three groups of rats. Kinetic analysis revealed a decrease in the V max value in FO- and OO- as compared with CO-fed rats. No difference among the three groups were observed in the K M value. The retinoylation reaction was inhibited by 13-cis-RA and 9-cis-RA.  相似文献   

5.
The mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to result from changes in gene expression via the aryl hydrocarbon receptor (AHR). The induction of cytochrome P450 1A (CYP1A) in various organs is a cardinal effect of TCDD. However, whether CYP1A is involved in endpoints of TCDD toxicity is controversial. We investigated the role of CYP1A in TCDD-induced developmental toxicities using gene knock-down with morpholino antisense oligos. Exposure of zebrafish embryos to TCDD, at concentrations eliciting the hallmark endpoints of developmental toxicity, induced CYP1A in the heart and vascular endothelium throughout the body. This induction by TCDD was markedly inhibited by morpholinos to zebrafish arylhydrocarbon receptor 2 (zfAHR2-MO) and to zebrafish CYP1A (zfCYP1A-MO). The zfAHR2-MO but not the zfCYP1A-MO inhibited zfCYP1A mRNA expression, indicating the specificities of these morpholinos. Injection of either zfAHR2-MO or zfCYP1A-MO blocked the representative signs of TCDD developmental toxicity in zebrafish, pericardial edema and trunk circulation failure. The morpholinos appeared do not affect normal development in TCDD-untreated embryos. These results suggest a mediatory role of zfCYP1A induction through zfAHR2 activation in causing circulation failure by TCDD in zebrafish. This is the first molecular evidence demonstrating an essential requirement for CYP1A induction in TCDD-evoked developmental toxicities in any vertebrate species.  相似文献   

6.
7.
The preceding paper (B. Gemzik, D. Greenway, C. Nevins, and A. Parkinson (1992). Regulation of two electrophoretically distinct proteins recognized by antibody against rat liver cytochrome P450 3A1. J. Biochem. Toxicol, 7 (43–52).) described the regulation of two rat liver microsomal proteins (50- and 51-kDa) recognized by antibody against P450 3A1. It was also shown that changes in the levels of the 51-kDa 3A protein were usually paralleled by changes in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation. The present study demonstrates that age- and sex-dependent changes in the 50-kDa protein were paralleled by changes in the rate of digitoxin oxidation to digitoxigenin bisdigitoxoside. Induction or suppression of the 50-kDa protein by treatment of rats with various xenobiotics were also paralleled by changes in the rate of digitoxin oxidation. These results suggest that, contrary to previous assumptions, the conversion of digitoxin to digitoxigenin bisdigitoxoside and the conversion of testosterone to 2β-, 6β- and 15β-hydroxytestosterone are primarily catalyzed by different forms of P450 3A. Further evidence for this coclusion was obtained from studies in which the suicide inhibitor, chloramphenicol, was administered to mature female rats previously treated with pregnenolone-16α-carbonitrile (PCN), which induces both the 50-kDa and the 51-kDa protein. Treatment of mature female rats with PCN alone caused a marked increase (16- to 18-fold) in the 6β-hydroxylation of testosterone and the rate of digitoxin oxidation. Treatment of PCN-induced rats with chloramphenicol caused a ~70% decrease in liver microsomal testosterone 6β-hydroxylation, but had no effect on the rate of conversion of digitoxin to digitoxigenin bisdigitoxoside. The oxidation of testosterone by purified 3A1 (a 51-kDa protein) was also inhibited by chloramphenicol in a time- and reduced nicotinamite adenine dinucleotide phosphate (NADPH)-dependent manner. In addition to testosterone and chloramphenicol, purified 3A1 also metabolized trole-andomycin, but it was unable to convert digitoxin to digitoxigenin bisdigitoxoside. Testosterone inhibited the microsomal oxidation of digitoxin, but digitoxin did not inhibit testosterone oxidation. This suggests that testosterone is a substrate for the 3A enzyme that metabolizes digitoxin, but that this form of P450 3A does not contribute significantly to testosterone oxidation by rat liver microsomes. We propose that the 2SbT-, 6β-, and 15β-hydroxylation of testosterone by rat liver microsomes is primarily catalyzed by the 51-kDa 3A proteins (either 3A1 or 3A2 depending on the source of microsomes), whereas digitoxin oxidation is primarily catalyzed by the 50-kDa protein.  相似文献   

8.
The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the fetal expression of testicular cytochrome P450 17 (CYP17), one of the enzymes necessary for sex steroid synthesis, was studied in Wistar rats. Fetal testicular CYP17 exhibited reduced mRNA and protein levels following exposure of the dams at gestational day 15 to 1 microg/kg TCDD. In support of this, CYP17 activity catalyzed by fetal testis homogenate was also reduced by maternal exposure to TCDD. The reduction in CYP17 expression seemed to be specific for fetal stages, because 7 day-old pups born from TCDD-treated dams did not exhibit any reduction in CYP17. In sharp contrast to the in vivo observations, TCDD failed to reduce CYP17 expression in cultured fetal testis, although CYP17 could be induced by activating cAMP-dependent signaling. To assess the role of pituitary luteinizing hormone (LH) on TCDD-induced reduction in fetal testicular CYP17, a further investigation was performed to examine whether the direct injection of LH into fetuses restores the altered CYP17 expression. The results showed that in utero injection of equine chorionic gonadotropin, an LH-mimicking hormone, completely abolishes the TCDD-produced reduction in fetal CYP17. However, neither the alpha- nor beta-subunits of LH in cultured fetal pituitary was reduced by TCDD. These results suggest that 1) maternal exposure to TCDD impairs the expression of testicular CYP17 in a fetal stage-specific manner; 2) this effect is due, at least partially, to a TCDD-produced reduction in circulating LH; and 3) TCDD exerts such an effect by affecting the upstream mechanism regulating the pituitary synthesis of LH.  相似文献   

9.
10.
An increasing awareness of the radiological impact of the nuclear power industry and other nuclear technologies is observed nowadays on general population. This led to renew interest to assess the health impact of the use of enriched uranium (EU). The aim of this work was to investigate in vivo the effects of a chronic exposure to EU on vitamin D(3) metabolism, a hormone essential in mineral and bone homeostasis. Rats were exposed to EU in their drinking water for 9 months at a concentration of 40 mg l(-1) (1mg/rat day). The contamination did not change vitamin D plasma level. Vitamin D receptor (vdr) and retinoid X receptor alpha (rxralpha), encoding nuclear receptors involved in the biological activities of vitamin D, showed a lower expression in kidney, while their protein levels were paradoxically increased. Gene expression of vitamin D target genes, epithelial Ca(2+) channel 1 (ecac1) and Calbindin-D28k (cabp-d28k), involved in renal calcium transport were decreased. Among the vitamin D target organs examined, these molecular modifications occurred exclusively in the kidney, which confirms that this organ is highly sensitive to uranium exposure. In conclusion, this study showed that a chronic exposure to EU affects both mRNA and protein expressions of renal nuclear receptors involved in vitamin D metabolism, without any modification of the circulating vitamin D.  相似文献   

11.
12.
CYP102s represent a family of natural self-sufficient fusions of cytochrome P450 and cytochrome P450 reductase found in some bacteria. One member of this family, named CYP102A1 or more traditionally P450BM-3, has been widely studied as a model of human P450 cytochromes. Remarkable detail of P450 structure and function has been revealed using this highly efficient enzyme. The recent rapid expansion of microbial genome sequences has revealed many relatives of CYP102A1, but to date only two from Bacillus subtilis have been characterized. We report here the cloning and expression of CYP102A5, a new member of this family that is very closely related to CYP102A4 from Bacillus anthracis. Characterization of the substrate specificity of CYP102A5 shows that it, like the other CYP102s, will metabolize saturated and unsaturated fatty acids as well as N-acylamino acids. CYP102A5 catalyzes very fast substrate oxidation, showing one of the highest turnover rates for any P450 monooxygenase studied so far. It does so with more specificity than other CYP102s, yielding primarily ω-1 and ω-2 hydroxylated products. Measurement of the rate of electron transfer through the reductase domain reveals that it is significantly faster in CYP102A5 than in CYP102A1, providing a likely explanation for the increased monooxygenation rate. The availability of this new, very fast fusion P450 will provide a great tool for comparative structure-function studies between CYP102A5 and the other characterized CYP102s.  相似文献   

13.
25-Hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) is an important inactivating enzyme and its expression is induced by 25-hydroxyvitamin D3 (25OHD3) and 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) through action of heterodimers of vitamin D receptor (VDR) and retinoid X receptor (RXR). RXRs also act as heterodimer partners for retinoic acid receptors (RARs), mediating the action of all-trans-retinoic acid (ATRA). Prostate stroma plays a crucial role in prostate cancer development and benign prostatic hyperplasia. We demonstrate here that ATRA markedly reduced the expression of 24-hydroxylase mRNA induced by 25OHD3 and 1alpha,25-(OH)2D3 in human prostatic stromal cells P29SN and P32S but not in epithelial cells PrEC or cancer cells LNCaP. By using transfection and RAR-selective ligands, we found that the inhibitory effect of ATRA on 24-hydroxylase expression in stromal cells was mediated by RARalpha but not by RARbeta. Moreover, the ATRA-induced expression of RARbeta was also mediated by RARalpha. The combined treatment of 1alpha,25-(OH)2D3 and RARalpha agonist Am80 at 10 nM exhibited strong growth-inhibitory effect whereas either alone had no effect. Our data suggest that ATRA suppresses 24-hydroxylase expression through RARalpha-dependent signaling pathway and can enhance vitamin D action in suppression of cell growth.  相似文献   

14.
During the screening for novel differentiation inducers, we found that a culture broth of Streptomyces sp. HK-803 induced myeloid differentiation of HL-60 cells. The active substance was identified as deamino-hydroxy-phoslactomycin B (HPLM) by mass spectrometry, and synthesized HPLM also induced the differentiation of HL-60 cells. HPLM showed greater inhibition of protein phosphatase 2A (PP2A) activity than phoslactomycin B (PLMB); however, PLMB and okadaic acid did not induce differentiation. Moreover, treatment with ATRA and 1α, 25(OH)2D3 induced retinoic acid receptor-β and 1α, 25(OH)2 D3 24-hydroxylase, respectively, whereas HPLM did not, suggesting that HPLM is a novel differentiation inducer.  相似文献   

15.
Studies initiated to determine the expression of CYP1A1/1A2 isoenzymes in the primary cultures of rat brain neuronal and glial cells revealed significant activity of CYP1A-dependent 7-ethoxyresorufin-o-dealkylase (EROD) in microsomes prepared from both rat brain neuronal and glial cells. RT-PCR and immunocytochemical studies demonstrated constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes in cultured neuronal and glial cells. Cultured neurons exhibited relatively higher constitutive mRNA and protein expression of CYP1A1 and 1A2 isoenzymes, associated with higher activity of EROD than the glial cells. Induction studies with 3-methylchlorantherene (MC), a known CYP1A-inducer, resulted in significant concentration dependent increase in the activity of EROD in cultured rat brain cells with glial cells exhibiting a greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies, indicating relatively higher increase in CYP1A1 and 1A2 mRNA as well as protein expression in the cultured glial cells when compared to the neuronal cells. The greater magnitude of induction of CYP1A1 in glial cells is of significance, as these cells are components of the blood-brain barrier and it is suggested that they have a potential role in the toxication-detoxication mechanism. Our data indicating differences in the expression and sensitivity of CYP1A1 isoenzymes in cultured rat brain cells will not only help in identifying and distinguishing xenobiotic metabolizing capability of these cells but also in understanding the vulnerability of these specific cell types towards neurotoxicants.  相似文献   

16.
Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise.  相似文献   

17.
Lecithin retinol acyltransferase (LRAT) is a 230 amino acids membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. The enzymatic activity of a truncated form of LRAT (tLRAT) which contains the residues required for catalysis but which is lacking N- and C-terminal hydrophobic segments has been shown to depend on the detergent used for its solubilization. Moreover, it is unknown whether tLRAT can bind membranes in the absence of these hydrophobic segments. The present study has allowed to measure the membrane binding and hydrolytic action of tLRAT in lipid monolayers by use of polarization modulation infrared reflection absorption spectroscopy and Brewster angle microscopy. Moreover, the proportion of the secondary structure components of tLRAT was determined in three different detergents by infrared absorption spectroscopy, vibrational circular dichroism and electronic circular dichroism which allowed to explain its detergent dependent activity. In addition, the secondary structure of tLRAT in the absence of detergent was very similar to that in Triton X-100 thus suggesting that, compared to the other detergents assayed, the secondary structure of this protein is very little perturbed by this detergent.  相似文献   

18.
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70 °C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100 °C. The results of this study highly improved our understanding of this enzyme.  相似文献   

19.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is considered one of the most toxic dioxin-like compounds. It is ubiquitous in foodstuffs of animal origin and accumulates in the fatty tissues of animals and humans. Prenatal TCDD exposure has been associated, beside other effects, with persistent impaired cognitive development. In the present study, the effects of maternal exposure to TCDD during pregnancy on cortical neuron development at birth and cortical glutamate transmission in new-born, 14- and 60-day-old rat offspring, were investigated. A single dose (0.7μg/kg) of TCDD dissolved in corn oil was orally administrated to the dams on gestational day 18; controls dams were treated with the vehicle. All the experiments have been performed on the male offspring from vehicle-treated (i.e. control group) and TCDD-treated dams. Primary cultures of cerebral cortical neurons obtained from 1-day-old rats born from mothers exposed to TCDD displayed a reduction in cell viability (MTT assay) and an increase in the number of apoptotic nuclei (nuclear staining with Hoechst 33258) possibly associated with altered dendrite outgrowth (MAP2-immunoreactivity) with respect to control cell cultures. These changes were associated with impairment in cortical glutamate transmission, characterized by a reduction in basal and K(+)-evoked outflow as well as a decrease in [(3)H]glutamate uptake. Interestingly, the prenatal TCDD-induced alteration of cortical glutamate signaling is persistent since it was also present in 14- and 60-day-old offspring. Taken together, these results suggest that a single prenatal exposure to TCDD produces alterations in cortical neuron development associated with a long-term dysfunction of glutamate transmission in rat cerebral cortex. The possible relevance of these findings for the understanding of the long-lasting cognitive deficit observed in the offspring from mothers exposed to the toxicant during pregnancy, is discussed.  相似文献   

20.
The effects of the subchronic administration of Panax ginseng extracts were examined on the hepatic cytochrome P450-dependent monooxygenase system of guinea pigs pre-exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Panax ginseng extracts were intraperitoneally administered to guinea pigs at 100 mg/kg/day for 14 days from 1 week after a single intraperitoneal injection of 1 microg of TCDD/kg of body weight. TCDD treatment increased the total cytochrome P450 content 2.86-fold, and this was remarkably inhibited by the administration of Panax ginseng extracts. Treatment with ginseng extract alone also decreased the contents of cytochrome P450 by 33%, but both TCDD and ginseng extracts had no effect on cytochrome b(5) content. The administration of TCDD resulted in a 1.73-fold increase in microsomal NADPH-cytochrome P450 reductase activity in the guinea pig liver, and this was significantly inhibited by ginseng extracts, but treatment with ginseng extracts alone had no effect on its activity, and no statistical changes in the activity of NADPH-cytochrome b(5) reductase were observed in guinea pig liver due to TCDD and/or ginseng extract administration. Compared to the control, ECOD activity remarkably (1.76-fold) increased after TCDD administration, but this increase was completely inhibited by treatment with ginseng extract. Treatment with ginseng extract alone resulted in a 50% reduction of ECOD activity. TCDD administration remarkably induced benzphetamine demethylation (BPDM) activity, while ginseng extract also slightly increased the enzyme's activity, but the induction attributed to ginseng extracts was not statistically significant. Even though administration of ginseng extracts slightly inhibited TCDD-induced BPDM activity, the inhibition was not statistically significant. These results indicate that ginseng extract exerts different effect on the induction of P450 isozymes. From these results, we suggest that Panax ginseng extracts may act as an inhibitor of CYP1A rather than that of CYP2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号