首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytochrome P450 mono-oxygenases from peppermint, spearmint and perilla (all members of the family Lamiaceae) mediate the regiospecific hydroxylation of the parent olefin (−)-limonene to produce essential oil components oxygenated at C3, C6 and C7, respectively. Cloning, expression and mutagenesis of cDNAs encoding the peppermint limonene-3-hydroxylase and the spearmint limonene-6-hydroxylase have allowed the identification of a single amino acid residue which determines the regiospecificity of oxygenation by these two enzymes. A hybridization strategy provided a cytochrome P450 limonene hydroxylase cDNA from perilla with which to further evaluate the structural determinants of regiospecificity for oxygenation of the common substrate (−)-limonene. The perilla cDNA was a partial clone of 1550 bp (lacking the N-terminal membrane insertion domain), and shared 66% identity with the peppermint 3-hydroxylase and spearmint 6-hydroxylase at the amino acid level. The perilla cytochrome P450 was expressed in Escherichia coli as a chimeric protein fused with the N-terminal membrane insertion domain of the limonene-3-hydroxylase. The kinetically competent recombinant protein was characterized and shown to produce a mixture of C3-, C6- and C7-hydroxylated limonene derivatives with a distribution of 33%, 14% and 53%, respectively.  相似文献   

3.
The oxygenation pattern of the essential oil monoterpenes of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In spearmint (M. spicata), C6-allylic hydroxylation leads to (-)-trans-carveol and thence (-)-carvone, whereas in peppermint (M. x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol and ultimately (-)-menthol. cDNAs encoding the C6-hydroxylase and C3-hydroxylase from spearmint and peppermint, respectively, were isolated by a combination of reverse genetic and homology-based cloning methods (S. Lupien, F. Karp, M. Wildung, and R. Croteau, Arch. Biochem. Biophys. 368, 181-192, 1999). Although both hydroxylase genes were confirmed by functional expression using the baculovirus-Spodoptera system, too little protein was available by this approach to permit detailed study of the structure-function relationships of these catalysts, especially the substrate binding determinants that underlie the regiochemistry and stereochemistry of the reactions. Therefore, heterologous overexpression systems based on Escherichia coli and Saccharomyces cerevisiae were developed to produce several N-terminally modified versions of the recombinant hydroxylases. Ancillary methods for the solubilization, purification, and reconstitution (with recombinant spearmint cytochrome P450 reductase) of the limonene hydroxylases were also devised, with which substrate binding behavior and precise regiochemistry and stereochemistry of product formation were determined.  相似文献   

4.
(+)-Menthofuran is an undesirable monoterpenoid component of peppermint (Mentha x piperita) essential oil that is derived from the alpha,beta-unsaturated ketone (+)-pulegone. Microsomal preparations, from the oil gland secretory cells of a high (+)-menthofuran-producing chemotype of Mentha pulegium, transform (+)-pulegone to (+)-menthofuran in the presence of NADPH and molecular oxygen, implying that menthofuran is synthesized by a mechanism analogous to that of mammalian liver cytochrome P450s involving the hydroxylation of the syn-methyl group of (+)-pulegone, spontaneous intramolecular cyclization to the hemiketal, and dehydration to the furan. An abundant cytochrome P450 clone from a peppermint oil gland cell cDNA library was functionally expressed in Saccharomyces cerevisiae and Escherichia coli and shown to encode the (+)-menthofuran synthase (i.e., (+)-pulegone-9-hydroxylase). The full-length cDNA contains 1479 nucleotides, and encodes a protein of 493 amino acid residues of molecular weight 55,360, which bears all of the anticipated primary structural elements of a cytochrome P450 and most closely resembles (35% identity) a cytochrome P450 monoterpene hydroxylase, (+)-limonene-3-hydroxylase, from the same source. The availability of this gene permits transgenic manipulation of peppermint to improve the quality of the derived essential oil.  相似文献   

5.
Funk C  Croteau R 《Plant physiology》1993,101(4):1231-1237
(+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases.  相似文献   

6.
Turner GW  Croteau R 《Plant physiology》2004,136(4):4215-4227
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.  相似文献   

7.
8.
Gamma irradiation of Scotch spearmint created a mutant line, 643-10-74, which has an altered essential oil reminiscent of peppermint because the monoterpene metabolites in the oil glands of the mutant are predominantly oxygenated at the C3 position of the p-menthane ring instead of the C6 position normally found in spearmint. The limonene hydroxylase genes responsible for directing the regiochemistry of oxygenation were cloned from Scotch spearmint and mutant 643 and expressed in Escherichia coli. The limonene bydroxylase from the wild-type parent hydroxylated the C6 position while the enzyme from the mutant oxygenated the C3 position. Comparison of the amino acid sequences with other limonene hydroxylases showed that the mutant enzyme was more closely related to the peppermint limonene-3-hydroxylases than to the spearmint limonene-6-hydroxylases. Because of the sequence differences between the Scotch spearmint and mutant 643 limonene hydroxylases, it is most likely that the mutation did not occur within the structural gene for limonene hydroxylase but rather at a regulatory site within the genome that controls the expression of one or the other regiospecific variants.  相似文献   

9.
A radiation-induced mutant of Scotch spearmint (Mentha × gracilis) was shown to produce an essential oil containing principally C3-oxygenated p-menthane monoterpenes that are typical of peppermint, instead of the C6-oxygenated monoterpene family characteristic of spearmint. In vitro measurement of all of the enzymes responsible for the production of both the C3-oxygenated and C6-oxygenated families of monoterpenes from the common precursor (−)-limonene indicated that a virtually identical complement of enzymes was present in wild type and mutant, with the exception of the microsomal, cytochrome P-450-dependent (−)-limonene hydroxylase; the C6-hydroxylase producing (−)-trans-carveol in the wild type had been replaced by a C3-hydroxylase producing (−)-trans-isopiperitenol in the mutant. Additionally, the mutant, but not the wild type, could carry out the cytochrome P-450-dependent epoxidation of the α,β-unsaturated bond of the ketones formed via C3-hydroxylation. Although present in the wild type, the enzymes of the C3-pathway that convert trans-isopiperitenol to menthol isomers are synthetically inactive because of the absence of the key C3-oxygenated intermediate generated by hydroxylation of limonene. These results, which clarify the origins of the C3- and C6-oxygenation patterns, also allow correction of a number of earlier biogenetic proposals for the formation of monoterpenes in Mentha.  相似文献   

10.
Messenger RNA from the livers of Aroclor 1254 treated mice was used to produce a cDNA library. cDNA clones corresponding to cytochromes P1-450 and P3-450 were isolated from this library by screening with a probe for the rat cytochrome P-450c gene. Specific non-cross hybridizing probes for P1-450 and P3-450 were prepared from unique restriction fragments. The radiolabeled probes were hybridized to RNA from mice treated with a low (15 mg/kg) and high (150 mg/kg, 400 mg/kg) doses of beta-naphthoflavone. The low dose of beta-naphthoflavone was found to induce only P3-450 mRNA, whereas higher doses induced both P1-450 and P3-450 mRNA. Similarly, a low dose of beta-naphthoflavone induced aflatoxin B1-4-hydroxylase, whereas higher doses induced both aflatoxin B1-4-hydroxylase and aryl hydrocarbon hydroxylase activities. These results suggest that P3-450 mRNA codes for the cytochrome that is associated with aflatoxin B1-4-hydroxylase activity.  相似文献   

11.
12.
Aflatoxin B1 (AFB1), a potent hepatocarcinogen and ubiquitous dietary contaminant in some countries, is detoxified to aflatoxin M1 (AFM1) via cytochrome P-450-mediated AFB1-4-hydroxylase. Genetic studies in mice have demonstrated that the expression of AFB1-4-hydroxylase is regulated by the aryl hydrocarbon locus and suggested that different cytochrome P-450 isozymes catalyze AFB1-4-hydroxylase and aryl hydrocarbon hydroxylase activities. We have now examined lysates from mammalian cells infected with recombinant vaccinia viruses containing expressible cytochrome P1-450 or P3-450 cDNAs for their ability to metabolize AFB1 to AFM1. Our results show that cytochrome P3-450 cDNA specifies AFB1-4-hydroxylase. This is the first direct assignment of a specific cytochrome P-450 to an AFB1 detoxification pathway. This finding may have relevance to the dietary modulation of AFB1 hepatocarcinogenesis.  相似文献   

13.
14.
Microsomal preparations from the epidermal oil glands of Mentha piperita, Mentha spicata, and Perilla frutescens leaves catalyze the NADPH- and O2-dependent allylic hydroxylation of the monoterpene olefin (-)-limonene at C-3, C-6, and C-7, respectively, to produce the corresponding alcohols, (-)-trans-isopiperitenol, (-)-trans-carveol, and (-)-perillyl alcohol. These transformations are the key steps in the biosynthesis of oxygenated monoterpenes in the respective species, and the responsible enzyme systems meet most of the established criteria for cytochrome P450-dependent mixed function oxygenases. The reactions catalyzed are completely regiospecific and, while exhibiting only a modest degree of enantioselectivity, are highly specific for limonene as substrate. Of numerous monoterpene olefins tested, including several positional isomers of limonene, only the 8,9-dihydro analog served as an alternate substrate for ring (C-3 and C-6) hydroxylation, but not side chain (C-7) hydroxylation. In addition to the regiospecificity of the allylic hydroxylation, these enzymes are also readily distinguishable based on differential inhibition by substituted imidazoles.  相似文献   

15.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

16.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen in the A/J mouse, and is believed to be a causative agent for human lung cancer. NNK requires metabolic activation by alpha-hydroxylation to exert its carcinogenic potential. The human P450, 2A6 is a catalyst of this reaction. There are two closely related enzymes in the mouse, P450 2A4 and 2A5, which differ from each other by only 11 amino acids. In the present study these two mouse P450s were expressed in Spodoptera frugiperda (Sf9) cells using recombinant baculovirus. The catalysis of NNK metabolism by Sf9 microsomal fractions containing either P450 2A4 or 2A5 was determined. Both enzymes catalyzed the alpha-hydroxylation of NNK but with strikingly different efficiencies and specificities. P450 2A5 preferentially catalyzed NNK methyl hydroxylation, while P450 2A4 preferentially catalyzed methylene hydroxylation. The KM and Vmax for the former were 1.5 microM and 4.0 nmol/min/nmol P450, respectively, and for the latter 3.9 mM and 190 nmol/min/nmol P450. The mouse coumarin 7-hydroxylase, P450 2A5 is a significantly better catalyst of NNK alpha-hydroxylation than is the closely related human enzyme, P450 2A6.  相似文献   

17.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献   

18.
19.
20.
Screening of cytochrome P450 monoxygenases responsible for the regiospecific hydroxylation of flavones, isoflavones and chalcones was attempted using a P450 library constructed from Streptomyces avermitilis MA4680, Bacillus and Nocardia farcinica IFM10152 strains. As electron transfer redox partners with the P450s in Escherichia coli system, putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida were used. Among the 50 soluble P450s in the library screened, three cytochrome P450s, i.e. CYP107Y1, CYP125A2 and CYP107P2 from S. avermitilis MA4680 showed good hydroxylation activities towards flavones and isoflavones. However, low product yields prevented us from identifying complete structure of the products. By using S. avermitilis MA4680 as their expression host, further analysis identified that CYP107Y1(SAV2377), CYP125A2(SAV5841) and CYP107P2(SAV4539) showed good regiospecific hydroxylation activities towards genistein (4',5,7-trihydroxyisoflavone), chrysin (5,7-dihydroxyisoflavone) and apigenin (4',5,7-dihydroxyisoflavone) to produce 3',4',5,7,-tetrahydroxyisoflavone, B-ring hydroxylated 5,7-dihydroxyflavone and 3',4',5,7,-tetrahydroxyflavone, respectively. Analyses of the reaction products were performed using HPLC, ESI-MS-MS and GC-MS and 1H NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号