首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectrum of respiratory syncytial virus-encoded proteins was examined in infected cell extracts by standard polyacrylamide gel electrophoresis and by two-dimensional gel analysis. Polyacrylamide gel electrophoresis analysis of a variety of respiratory syncytial virus-infected, actinomycin D-treated cell lines revealed the presence of as many as nine virus-encoded proteins. Seven of these nine proteins were immunoprecipitated by anti-respiratory syncytial serum. Only one major band of [3H]glucosamine was detected in infected cell extracts (Vp86), whereas the reported major virion glycoprotein (Vp48-53) was difficult to detect in infected cells when carbohydrate labels were employed. Two-dimensional gel analysis easily identified seven viral proteins, and one other was tentatively identified. The reported major virion glycoprotein again was not consistently detected. The results of this study confirm the existence of a virus-coded glycoprotein (Vp86) in infected cell extracts. The existence of this glycoprotein in the purified virion has been in dispute, but the apparent low methionine content of this protein may be the reason for this controversy.  相似文献   

2.
3.
Reovirus infection activates NF-kappaB, which leads to programmed cell death in cultured cells and in the murine central nervous system. However, little is known about how NF-kappaB elicits this cellular response. To identify host genes activated by NF-kappaB following reovirus infection, we used HeLa cells engineered to express a degradation-resistant mutant of IkappaBalpha (mIkappaBalpha) under the control of an inducible promoter. Induction of mIkappaBalpha inhibited the activation of NF-kappaB and blocked the expression of NF-kappaB-responsive genes. RNA extracted from infected and uninfected cells was used in high-density oligonucleotide microarrays to examine the expression of constitutively activated genes and reovirus-stimulated genes in the presence and absence of an intact NF-kappaB signaling axis. Comparison of the microarray profiles revealed that the expression of 176 genes was significantly altered in the presence of mIkappaBalpha. Of these genes, 64 were constitutive and not regulated by reovirus, and 112 were induced in response to reovirus infection. NF-kappaB-regulated genes could be grouped into four distinct gene clusters that were temporally regulated. Gene ontology analysis identified biological processes that were significantly overrepresented in the reovirus-induced genes under NF-kappaB control. These processes include the antiviral innate immune response, cell proliferation, response to DNA damage, and taxis. Comparison with previously identified NF-kappaB-dependent gene networks induced by other stimuli, including respiratory syncytial virus, Epstein-Barr virus, tumor necrosis factor alpha, and heart disease, revealed a number of common components, including CCL5/RANTES, CXCL1/GRO-alpha, TNFAIP3/A20, and interleukin-6. Together, these results suggest a genetic program for reovirus-induced apoptosis involving NF-kappaB-directed expression of cellular genes that activate death signaling pathways in infected cells.  相似文献   

4.
5.
6.
Short viral antigens bound to human major histocompatibility complex (HLA) class I molecules are presented on infected cells. Vaccine development frequently relies on synthetic peptides to identify optimal HLA class I ligands. However, when natural peptides are analyzed, more complex mixtures are found. By immunoproteomics analysis, we identify in this study a physiologically processed HLA ligand derived from the human respiratory syncytial virus matrix protein that is very different from what was expected from studies with synthetic peptides. This natural HLA-Cw4 class I ligand uses alternative interactions to the anchor motifs previously described for its presenting HLA-Cw4 class I molecule. Finally, this octameric peptide shares its C-terminal core with the H-2D(b) nonamer ligand previously identified in the mouse model. These data have implications for the identification of antiviral cytotoxic T lymphocyte responses and for vaccine development.  相似文献   

7.
The nature of neutrophil-respiratory syncytial virus (RSV) interaction was investigated by assessing factors that influence neutrophil adherence to RSV-infected tissue culture monolayers. The adherence of neutrophils to infected cells was directly proportional to the degree of RSV replication as evidenced by infectious virus production, cytopathological changes, or viral antigen appearance. Sixty-one percent of the neutrophils adhered to the RSV-infected cells as compared with 52.7% on noninfected monolayers (P less than 0.05). The addition of RSV-specific antibody markedly increased polymorphonuclear leukocyte adherence to 88.5% (P less than 0.001). Complement in the absence of antibody augmented polymorphonuclear leukocyte adherence, but to a lesser degree, 69.0% (P less than 0.025). Arachidonic acid metabolism appeared to play a critical role in the adherence process; thromboxane was the single most important arachidonic acid metabolite. Inhibition of thromboxane synthesis reduced antibody-dependent polymorphonuclear leukocyte adherence on RSV-infected cells to 52.3% (P less than 0.025). These observations suggest a role for neutrophils in RSV infection. It is proposed that neutrophils may participate in RSV infection at the site of viral replication through the attachment to infected cells and the subsequent release of mediators of inflammation.  相似文献   

8.
The interaction between mite allergen sensitization and respiratory syncytial virus (RSV) infection at the level of cytokine mRNA expression was examined in a murine model in the present study. Primary RSV infection enhances expression of inflammatory cytokines such as IL-6, IFN-gamma, and eotaxin in the lung and upregulates the expression of Th2-like cytokines IL-10 and IL-13 in the spleen in BALB/c mice. Mite antigen-sensitized and RSV-infected (ASRSV) mice show enhanced (P < 0.05) total serum IgE compared to antigen-sensitized mice. However, the levels of viral mRNA in the lung tissues are comparable between RSV-infected and ASRSV mice. It is concluded that compartmentalization of cytokine expression following RSV infection plays a role in the augmentation of Th2-like and IgE antibody response to RSV.  相似文献   

9.
Nerve growth factor (NGF) controls sensorineural development and responsiveness and modulates immunoinflammatory reactions. Respiratory syncytial virus (RSV) potentiates the proinflammatory effects of sensory nerves in rat airways by upregulating the substance P receptor, neurokinin 1 (NK(1)). We investigated whether the expression of NGF and its trkA and p75 receptors in the lungs is age dependent, whether it is upregulated during RSV infection, and whether it affects neurogenic inflammation. Pathogen-free rats were killed at 2 (weanling) to 12 (adult) wk of age; in addition, subgroups of rats were inoculated with RSV or virus-free medium. In pathogen-free rats, expression of NGF and its receptors in the lungs declined with age, but RSV doubled expression of NGF, trkA, and p75 in weanling and adult rats. Exogenous NGF upregulated NK(1) receptor expression in the lungs. Anti-NGF antibody inhibited NK(1) receptor upregulation and neurogenic inflammation in RSV-infected lungs. These data indicate that expression of NGF and its receptors in the lungs declines physiologically with age but is upregulated by RSV and is a major determinant of neurogenic inflammation.  相似文献   

10.
Respiratory syncytial virus (RSV) infection involves complex virus-host interplay. In this study, we analyzed gene expression in RSV-infected BEAS-2B cells to discover novel signaling pathways and biomarkers. We hybridized RNAs from RSV- or vehicle-treated BEAS-2B to Affymetrix HU133 plus 2.0 microarrays (n = 4). At 4 and 24 h post-infection, 277 and 900 genes (RSV/control ratio ≥2.0 or ≤0.5), and 1 and 12 pathways respectively were significantly altered. Twenty-three and 92 genes at 4 and 24 h respectively matched respiratory disease biomarkers with ARG2 flagged at 24 h and SCNN1G, EPB41L4B, CSF1, PTEN, TUBB1 and ESR2 at both time points. Hierachical clustering showed a cluster containing ARG2 and IL8. In human bronchial epithelial cells, RSV upregulated arginase II protein. Knockdown of ARG2 increased RSV-induced IL-8, LDH and histone release. With microarray, we identified novel proximal airway epithelial cell genes that may be tested in the sputum samples as biomarkers of RSV infection.  相似文献   

11.
The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.  相似文献   

12.
Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells.A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection.We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.  相似文献   

13.
Zang N  Xie X  Deng Y  Wu S  Wang L  Peng C  Li S  Ni K  Luo Y  Liu E 《Journal of virology》2011,85(24):13061-13068
Respiratory syncytial virus (RSV) is the most important cause of severe, lower respiratory tract infections in infants, and RSV infections have been associated with chronic wheezing and asthma during childhood. However, the mechanism of RSV-induced airway inflammation and airway hyperresponsiveness (AHR) is poorly understood. Furthermore, there are presently neither effective vaccines nor drugs available for the prevention or treatment of RSV infections. In this study, we investigated the effect of the plant extract resveratrol as a means of preventing airway inflammation and attenuating RSV-induced AHR. Our data showed that resveratrol reduced RSV lung titers and the number of infiltrating lymphocytes present in bronchoalveolar lavage fluid (BALF) and reduced inflammation. Furthermore, resveratrol attenuated airway responses to methacholine following RSV infection and significantly decreased gamma interferon (IFN-γ) levels in BALF of RSV-infected mice. Data presented in this report demonstrated that resveratrol controlled Toll-like receptor 3 (TLR3) expression, inhibited the TRIF signaling pathway, and induced M2 receptor expression following RSV infection. These data support a role for the use of resveratrol as a means of reducing IFN-γ levels associated with RSV-mediated airway inflammation and AHR, which may be mediated via TLR3 signaling.  相似文献   

14.
15.
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in infants and children. To study RSV replication, we have developed an in vitro model of human nasopharyngeal mucosa, human airway epithelium (HAE). RSV grows to moderate titers in HAE, though they are significantly lower than those in a continuous epithelial cell line, HEp-2. In HAE, RSV spreads over time to form focal collections of infected cells causing minimal cytopathic effect. Unlike HEp-2 cells, in which wild-type and live-attenuated vaccine candidate viruses grow equally well, the vaccine candidates exhibit growth in HAE that parallels their level of attenuation in children.  相似文献   

16.
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.  相似文献   

17.
A recombinant cDNA plasmid (pRSA3) containing an almost full-length copy of the mRNA encoding respiratory syncytial virus phosphoprotein was identified in a cDNA library prepared with mRNA from respiratory syncytial virus-infected cells. The cDNA insert was sequenced, and a protein of 27,150 daltons was deduced from the DNA sequence. The protein is relatively acidic, containing two clusters of acidic amino acids, one in the middle of the molecule and the other at the C-terminus. It is devoid of both cysteine and tryptophan. There was no other potential reading frame within the phosphoprotein gene of respiratory syncytial virus. This situation is unlike that with Sendai virus, a paramyxovirus, which has a nonstructural C protein encoded by a second overlapping reading frame near the 5' end of the mRNA for phosphoprotein.  相似文献   

18.
Lower respiratory tract disease caused by respiratory syncytial virus (RSV) is characterized by profound airway mucosa inflammation, both in infants with naturally acquired infection and in experimentally inoculated animal models. Chemokines are central regulatory molecules in inflammatory, immune, and infectious processes of the lung. In this study, we demonstrate that intranasal infection of BALB/c mice with RSV A results in inducible expression of lung chemokines belonging to the CXC (MIP-2 and IP-10), CC (RANTES, eotaxin, MIP-1beta, MIP-1alpha, MCP-1, TCA-3) and C (lymphotactin) families. Chemokine mRNA expression occurred as early as 24 h following inoculation and persisted for at least 5 days in mice inoculated with the highest dose of virus (10(7) PFU). In general, levels of chemokine mRNA and protein were dependent on the dose of RSV inoculum and paralleled the intensity of lung cellular inflammation. Immunohisthochemical studies indicated that RSV-induced expression of MIP-1alpha, one of the most abundantly expressed chemokines, was primarily localized in epithelial cells of the alveoli and bronchioles, as well as in adjoining capillary endothelium. Genetically altered mice with a selective deletion of the MIP-1alpha gene (-/- mice) demonstrated a significant reduction in lung inflammation following RSV infection, compared to control littermates (+/+ mice). Despite the paucity of infiltrating cells, the peak RSV titer in the lung of -/- mice was not significantly different from that observed in +/+ mice. These results provide the first direct evidence that RSV infection may induce lung inflammation via the early production of inflammatory chemokines.  相似文献   

19.
Persistent infection of cells in culture by respiratory syncytial virus.   总被引:4,自引:0,他引:4  
The virus-cell relationship of RS virus and the HEp-2 cell line has been examined. The production of cytopathic effect (c.p.e.) on HEp-2 cells has been found to be dependent upon the passage level of the cell line. Cells at lower passage levels exhibit c.p.e. in the form of syncytium formation, while those at higher passage levels no longer exhibit this effect. Cells infected at higher passage levels are covertly infected and continue to produce large amounts of infectious virus which remains cell-associated. On continued passage, these cells remain infected with virus but show no c.p.e. and release little if any infectious virus into the medium. Examination of the RNA species present in infected cells revealed that similar species are present in both the overtly and covertly infected cells.  相似文献   

20.
Human respiratory syncytial virus (RSV) causes a large burden of disease worldwide. There is no effective vaccine or therapy, and the use of passive immunoprophylaxis with RSV-specific antibodies is limited to high-risk patients. The cellular receptor (or receptors) required for viral entry and replication has yet to be described; its identification will improve understanding of the pathogenesis of infection and provide a target for the development of novel antiviral interventions. Here we show that RSV interacts with host-cell nucleolin via the viral fusion envelope glycoprotein and binds specifically to nucleolin at the apical cell surface in vitro. We observed decreased RSV infection in vitro in neutralization experiments using nucleolin-specific antibodies before viral inoculation, in competition experiments in which virus was incubated with soluble nucleolin before inoculation of cells, and upon RNA interference (RNAi) to silence cellular nucleolin expression. Transfection of nonpermissive Spodoptera frugiperda Sf9 insect cells with human nucleolin conferred susceptibility to RSV infection. RNAi-mediated knockdown of lung nucleolin was associated with a significant reduction in RSV infection in mice (P = 0.0004), confirming that nucleolin is a functional RSV receptor in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号