首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver cells grown in primary cultures in the presence of [35S]sulphate synthesize a labelled heparan sulphate-like glycosaminoglycan. The characterization of the polysaccharide as heparan sulphate is based on its resistance to digestion with chondroitinase ABC or hyaluronidase and its susceptibility to HNO2 treatment. The sulphate groups (including sulphamino and ester sulphate groups) are distributed along the polymer in the characteristic block fashion. In 3H-labelled heparan sulphate, isolated after incubation of the cells with [3H]galactose, 40% of the radioactive uronic acid units are l-iduronic acid, the remainder being d-glucuronic acid. The location of heparan sulphate at the rat liver cell surface is demonstrated; part of the labelled polysaccharide can be removed from the cells by mild treatment with trypsin or heparitinase. Further, a purified plasma-membrane fraction isolated from rats previously injected with [35S]sulphate contains radioactively labelled heparan sulphate. A proteoglycan macromolecule composed of heparan sulphate chains attached to a protein core can be solubilized from the membrane fraction by extraction with 6m-guanidinium chloride. The proteoglycan structure is degraded by treatment with papain, Pronase or alkali. The production of heparan [35S]sulphate by rat liver cells incubated in the presence of [35S]sulphate was followed. Initially the amount of labelled polysaccharide increased with increasing incubation time. However, after 10h of incubation a steady state was reached where biosynthetic and degradative processes were in balance.  相似文献   

2.
Retinal microvessels were isolated from bovine eyes and the basement membranes were purified either directly or after incubation with [35S]sulfate and [14C]glucosamine. The basement membranes, which were purified by osmotic lysis and sequential treatment with detergents, had the general compositional features associated with basement membrane collagens, including high levels of hydroxyproline and hydroxylysine and the presence of 3-hydroxyproline and cystine. After pronase digestion, cellulose acetate electrophoresis of glycosaminoglycans from retinal microvessel basement membrane revealed material comigrating with heparan sulfate that was insensitive to digestion with Streptomyces hyaluronidase and chondroitinase ABC. Retinal microvessels also incorporated [35S]- and [14C]glucosamine into glycosaminoglycans that were isolated following pronase digestion of the retinalmicrovessel basement membrane purified from these incubations. The findings provide the first demonstration that glycosaminoglycans are integral components of the retinal microvascular basement membrane and suggest that heparan sulfate is the major glycosaminoglycan species in this basement membrane.  相似文献   

3.
The structure of dermatan [35S]sulphate-chondroitin [35S]sulphate copolymers synthesized and secreted by fibroblasts in culture was studied. 35S-labelled glycosaminoglycans were isolated from the medium, a trypsin digest of the cells and the cell residue after 72h of 35SO42-incorporation. The galactosaminoglycan component (dermatan sulphatechondroitin sulphate copolymers) was isolated and subjected to various degradation procedures including digestion with testicular hyaluronidase, chondroitinase-AC and-ABC and periodate oxidation followed by alkaline elimination. The galactosaminoglycans from the various sources displayed significant structural differences with regard to the distribution of various repeating units, i.e. IdUA-GalNAc-SO4 (L-iduronic acid-N-acetyl-galactosamine sulphate), GlcUA-GalNAc-SO4 (D-glucuronic acid-N-acetylgalactosamine-sulphate) and IdUA(-SO4)-GalNAc (L-iduronosulphate-N-acetylgalactosamine). The galactosaminoglycans of the cell residue contained larger amounts of IdUA-GalNAc-SO4 than did those isolated from the medium or those released by trypsin. In contrast, the glycans from the latter 2 sources contained large proportions of periodate-resistant repeat periods [GlcUA-GalNAc-SO4 and IdUA(-SO4)-GalNAc]. Periods containing L-iduronic acid sulphate were particularly prominent in copolymers found in the medium. Kinetic studies indicated that the 35S-labelled glycosaminoglycan of the cell residue accumulated radioactivity more slowly than did the glycans of other fractions, indicating that the material remaining with the cells was not exclusively a precursor of the secreted polymers. The presence of copolymers rich in glucuronic acid or iduronic acid sulphate residues in the soluble fractions may be the result of selective secretion from the cells. Alternatively, extracellular, polymer-level modifications such as C-5 inversion of L-iduronic acid to D-glucuronic acid, or sulphate rearrangements, would yield similar results.  相似文献   

4.
Primary cultures of rat hepatocytes maintained on different matrix proteins such as collagen (Co IV) fibronectin (Fn), Laminin (Ln) or different tissue biomatrices were metabolically labelled with 35[S]-SO4 and the synthesis of sulphated proteoglycans was studied. The incorporation of the label into total glycosaminoglycan (GAG) was significantly higher in cells maintained on Co IV compared to those maintained on Fn or Ln. Similarly the incorporation of label was maximum in those cells maintained on the aortic biomatrix compared to liver or mammary gland biomatrix. About 80–95% of the GAG synthesised and secreted by cells maintained on individual matrix proteins and liver biomatrix was heparan sulphate (HS). But in the case of cells maintained on collagen IV aortic or mammary biomatrix in addition to HS, significant amount of chondroitin sulphate (CS) was also found. Nearly 50% of the total 35[S]-GAG was associated with the cell layer after 24 h in culture in the case of cells maintained on individual matrix protein while those maintained on tissue biomatrix, retained about 70% of the 35[S]-labelled proteoglycans (PG) with the cell layer. Analysis of the cell surface 35[S]-labelled proteoglycans isolated from cells maintained on different biomatrix showed that it is a hybrid proteoglycan consisting of CS and HS. While the PG isolated from cells maintained on liver biomatrix consists of HS and CS in the ratio of 3:2 that from cells maintained on aorta or mammary gland matrix was about 2:3 indicating an alteration in the nature of the cell surface PGs produced by cells maintained on different tissue biomatrix. These results indicate that depending on the nature of the matrix substratum with which the cells are in contact, the nature and quantity of sulphated proteoglycans produced by hepatocytes vary.  相似文献   

5.
We report on the incorporation of radiolabelled sulphate into proteoglycan in the 'in situ'-perfused rat liver. After 5 min virtually all of the [35S]sulphate was incorporated into heparan sulphate; no partially sulphated precursors were detected. Pulse-chase experiments, followed by centrifugation in gradients of sucrose and metrizamide, showed that, at 5 min, the heparan sulphate was associated predominantly with the Golgi membranes. Over the next 20 min, intact proteoglycan appeared at the plasma membrane. At intermediate times the heparan sulphate was detected simultaneously in two distinct populations of membrane vesicles. Whether the heparan sulphate in these two populations has two different destinies (e.g. plasma membrane or secretion) is not yet clear. Subfractionation of the Golgi membranes showed that the N-sulphotransferase co-purified with the heparan [35S]sulphate and was separable from the galactosyltransferase of glycoprotein synthesis, confirming that the Golgi membrane system is functionally segregated. Subfractionation also permitted an almost 100-fold purification of the N-sulphotransferase over the homogenate: this will provide an excellent starting material for isolation and further characterization of the enzyme.  相似文献   

6.
Fibroblasts from cornea, heart, and skin of day 14 embryonic chicks demonstrate the ability to make heparan sulfate-like polysaccharide when examined during the 10 hr period immediately following their removal from the embryo. Both the whole tissues from which these fibroblasts are isolated and the fibroblasts grown for 2–5 weeks in vitro also synthesize heparan sulfate. During their first few days in vitro, the three fibroblast populations display increasing rates of [35S]-sulfate and d-[1-3H]-Glucosamine incorporation into glycosaminoglycans and sharp fluctuations of those rates, yet the percentage of total [35S]-sulfate incorporated into heparan sulfate-like polysaccharide and the distribution of this polysaccharide between cells and nutrient medium do not change significantly. During their first 48 hr in vitro, skin fibroblasts, but not those from cornea or heart, show steadily decreasing discrepancies between the proportions of [35S]-sulfate and d-[1-3H]-Glucosamine incorporated into heparan sulfate, suggesting a sharp decline in the synthesis of nonsulfated glycosaminoglycans. These data support the hypothesis of Kraemer than many cell-types in vivo may normally make heparan sulfate. The data largely eliminate the hypothesis that the biosynthesis of this polysaccharide is selectively stimulated as embryonic cells adapt to growth in vitro.  相似文献   

7.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

8.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

9.
The effect of retinoic acid on glycosaminoglycan biosynthesis was investigated in rat costal cartilage chondrocytes in vitro. At levels of 10?9 to 10?8m retinoic acid, 35SO4 uptake into glycosaminoglycans was reduced 50%. At these low levels of retinoic acid there was no evidence of lysosomal enzyme release. The results are explained best in terms of modification of glycosaminoglycan synthesis, rather than accelerated degradation. Retinoic acid selectively modified the incorporation of 35SO4 or [14C]glucosamine into individual glycosaminoglycans fractions under the conditions studied. The relative incorporation of radiolabeled precursor into heparan sulfate (and/or) heparin increased three- to fourfold. The relative incorporation of radiolabeled precursor remained constant for chondroitin 6-sulfate, whereas incorporation into chondroitin 4-sulfate and chondroitin (and/or) hyaluronic acid decreased. Under the conditions studied, retinoic acid did not appear to be cytotoxic and did exhibit selective control over glycosaminoglycan biosynthesis. It is suggested that the decreased incorporation of 35SO4 into glycosaminoglycans at hypervitaminosis A levels of retinol may be accounted for by the presence of low levels of retinoic acid, a naturally occurring metabolite.  相似文献   

10.
The distribution of glycosaminoglycans in disrupted glomerular fractions was studied using 35SO4-labeling in vivo and in vitro. The majority of 35S of isolated glomerular basement membrane was found in heparan sulfate after in vivo and in vitro pulses, although the absolute proportion and the degrees of N-sulfation and N-acetylation varied with the conditions of exposure. Varying amounts of chondroitin sulfate and dermatan sulfate were found in the glomerular basement membrane fraction and larger proportions of both of these glycosaminoglycans as well as of heparan sulfate were found in various glomerular fractions. Glomerular glycosaminoglycans distribution studies must take into account the experimental conditions. Basement membrane-like components of the glomerulus such as the mesangial matrix may have varying glycosaminoglycan composition which may be found in association with glomerular basement membrane fractions.  相似文献   

11.
Extraction of rat glomerular basement membrane, purified by osmotic lysis and sequential detergent treatment, with 8 M urea containing protease inhibitors solubilizes protein that is devoid of hydroxyproline and hydroxylysine. This material represents 8–12% of total membrane protein, elutes mainly as two high molecular weight peaks on agarose gel filtration, and is associated with glycosaminoglycans. Isolated rat renal glomeruli incorporate [35S]sulfate into basement membrane from which this non-collagenous 35S-labeled fraction can be subsequently solubilized. The radioactivity incorporated into urea-soluble glomerular basement membrane eluted primarily with the higher molecular weight peak (Mr greater than 250 000). Cellulose acetate electrophoresis after pronase digestion of the urea-soluble fraction revealed glycosaminoglycan that was resistant to digestion with Streptomyces hyaluronidase and chondroitinase ABC, sensitive to nitrous acid treatment, and contained [35S]-sulfate. The findings indicate that one of the non-collagenous components of glomerular basement membrane is a proteoglycan containing heparan sulfate.  相似文献   

12.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

13.
Denervation of the amputated limb of newts stops the regeneration process by decreasing blastema cell proliferation. We investigated the effect of the denervation on each of the two compartments (epidermal cap, mesenchyme) in mid-bud blastemas on the level of sulphated glycosaminoglycans (GAGS). Denervation resulted in an increase of about threefold in the incorporation of [35S] sulphate into mesenchyme GAGs but had no effect on the epidermal cap. The increase of GAG synthesis in the mesenchymal part of the blastema involved both heparan sulphates and chondroitin-dermatan sulphates. Gel filtration showed no change in GAGs size after denervation. These results confirm that the mesenchymal part of the mid-bud blastema is the main target of nerves and, as heparan sulphates are known to store acidic fibroblast growth factor (aFGF), a polypeptide found in the blastema (Boilly et al.. 1991), this suggest that the nerves' effect on glycosaminoglycans turnover could be implicated in the control of bioavailability of this growth factor in the blastema.  相似文献   

14.
Trypsin-releasable glycosaminoglycans from the luminal surface of intact pig aorta were measured following metabolic labelling with35S]sulphate. Chondroitin sulphate was found to be present at a surface density equal to that already established for heparan sulphate (5×1011 chains per cm2). This result was confirmed by X-ray microanalysis of the luminal sulphur content before and after treatment with specific glycosaminoglycan-degrading enzymes. This result implies that approximately half of the luminal surface is occupied by sulphated glycosaminoglycans.  相似文献   

15.
The glycosaminoglycans of human cultured normal glial and malignant glioma cells were studied. [35S]Sulphate or [3H]glucosamine added to the culture medium was incorporated into glycosaminoglycans; labelled glycosaminoglycans were isolated by DEAE-cellulose chromatography or gel chromatography. A simple procedure was developed for measurement of individual sulphated glycosaminoglycans in cell-culture fluids. In normal cultures the glycosaminoglycans of the pericellular pool (trypsin-susceptible material), the membrane fraction (trypsin-susceptible material of EDTA-detached cells) and the substrate-attached material consisted mainly of heparan sulphate. The intra- and extra-cellular pools showed a predominance of dermatan sulphate. The net production of hyaluronic acid was low. The accumulation of 35S-labelled glycosaminoglycans in the extracellular pool was essentially linear with time up to 72h. The malignant glioma cells differed in most aspects tested. The total production of glycosaminoglycans was much greater owing to a high production of hyaluronic acid and hyaluronic acid was the major cell-surface-associated glycosaminoglycan in these cultures. Among the sulphated glycosaminoglycans chondroitin sulphate, rather than heparan sulphate, was the predominant species of the pericellular pool. This was also true for the membrane fraction and substrate-attached material. Furthermore, the accumulation of extracellular 35S-labelled glycosaminoglycans was initially delayed for several hours and did not become linear with time until after 24 h of incubation. The glioma cells produced little dermatan sulphate and the dermatan sulphate chains differed from those of normal cultures with respect to the distribution of iduronic acid residues. The observed differences between normal glial and malignant glioma cells were not dependent on cell density; rather they were due to the malignant transformation itself.  相似文献   

16.
Maintenance of fibroblasts in 0.5% serum results in viable but non-proliferative cells that may be analogous to fibroblasts in vivo. The synthesis of proteoglycans by human embryo lung fibroblasts in Eagle's minimal essential medium with 0.5% newborn-bovine serum or with 10% serum has been compared. A similar amount of [35S]sulphate-labelled glycosaminoglycan per cell was secreted by fibroblasts in 10% or 0.5% serum. 35SO42-incorporation into sulphated glycosaminoglycans was enhanced in 0.5% serum when expressed per mg of cell protein, but [3H]glucosamine incorporation was decreased. The charge density of these glycosaminoglycans was not changed as determined by ion-exchange chromatography. It was concluded that decreased protein/ cell resulted in an apparent increase in 35S-labelled glycosaminoglycan synthesis/mg of cell protein, whereas decreased uptake of [3H]glucosamine resulted in a decrease in their glucosamine labelling. The proteoglycans secreted by fibroblasts in 0.5% serum were similar in glycosaminoglycan composition, chain length and buoyant density to the dermatan sulphate proteoglycan, which is the major secreted component of cells in 10% serum. Larger heparan sulphate and chondroitin sulphate proteoglycans, which comprise about 40% of the total secreted proteoglycans of cultures in 10% serum, were greatly diminished in the medium of cultures in 0.5% serum. The proteoglycan profile of medium from density-inhibited cultures in 10% serum resembles that of proliferating cultures, indicating that lack of proliferation was not responsible for the alteration. The dermatan sulphate proteoglycan, participating in extracellular matrix structure, may be the primary tissue product of lung fibroblasts in vivo.  相似文献   

17.
Abstract— Following intracranial injections of puromycin, the incorporation of [3H]leucine into brain protein was inhibited by 80 per cent. Conversely, incorporation of [35S]sulphate into sulphatide or [2-3H]glycerol into phosphatidyl choline was not inhibited. Under these conditions, appearance of labelled protein in myelin was inhibited by 90 per cent, while the appearance of newly labelled sulphatide and phosphatidyl choline in myelin membrane was not greatly affected. Experiments with cycloheximide gave similar results with phosphatidyl choline, but incorporation of [35S]sulphate into total sulphatide was decreased by about 30 per cent in animals given cycloheximide. Neither puromycin nor cycloheximide had any inhibitory effect on galactocerebroside sulphotransferase.  相似文献   

18.
Transport of heparan sulfate into the nuclei of hepatocytes   总被引:13,自引:0,他引:13  
Monolayer cultures of a rat hepatocyte cell line shown previously to accumulate a nuclear pool of free heparan sulfate chains that are enriched in sulfated glucuronic acid (GlcA) residues (Fedarko, N.S., and Conrad, H.E., (1986) J. Cell Biol. 587-599) were incubated with 35SO4(2-), and the rate of appearance of heparan [35S]sulfate in the nuclei was measured. Heparan [35S]sulfate began to accumulate in the nuclei 2 h after the administration of 35SO4(2-) to the cells and reached a steady state level after 20 h. Heparan [35S]sulfate was lost from the nuclei of prelabeled cells with a t1/2 of 8 h. Chloroquine did not inhibit the transport of heparan sulfate into the nucleus, but increased the t1/2 for the exit of heparan sulfate from the nucleus to 20 h and led to a doubling of the steady state level of nuclear heparan sulfate. Heparan [35S]sulfate which was obtained from the medium or from the cell matrix of a labeled culture and which contained only low levels of GlcA-2-SO4 residues was incubated with cultures of unlabeled cells, and the uptake of the exogenous heparan [35S]sulfate was studied. At 37 degrees C the cells took up proteoheparan [35S]sulfate and transported about 10% of the internalized heparan [35S]sulfate into the nucleus, where it appeared as free chains. The heparan [35S]sulfate isolated from the nucleus was enriched in GlcA-2-SO4 residues, whereas the heparan [35S]sulfate remaining in the rest of the intracellular pool showed a corresponding depletion in GlcA-2-SO4 residues. At 16 degrees C, where endocytosed materials do not enter the lysosomes, the cells also transported exogenous proteoheparan [35S]sulfate to the nucleus with similar processing. Thus, the metabolism of exogenous heparan sulfate by hepatocytes follows the same pathway observed in continuously labeled cells and does not involve lysosomal processing of the internalized heparan sulfate.  相似文献   

19.
Here we present evidence that a fibroblast heparan sulphate proteoglycan of approx. 300 kDa and with a core protein of apparent molecular mass 70 kDa is covalently linked to the plasma membranevia a linkage structure involving phosphatidylinositol. Phosphatidylinositol-specific phospholipase C releases such a heparan sulphate proteoglycan only from cells labelled with [35S]sulphate in the absence of serum. Cell cultures labelled with [3H]myo-inositol in the absence or presence of serum produce a radiolabelled heparan sulphate proteoglycan which was purified by gel-permeation chromatography and ion-exchange chromatography on MonoQ. Digestion with heparan sulphate lyase and analysis by gel-permeation chromatography and sodium dodecylsulphate-polyacrylamide gel-electrophoresis revealed that the3H-label is associated with a core protein of apparent mass 70 kDa.  相似文献   

20.
A sulphotransferase preparation from hen's uterus catalysed the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to N-desulphated heparan sulphate, heparan sulphate, N-desulphated heparin and dermatan sulphate. Heparin, chondroitin sulphate and hyaluronic acid were inactive as substrates for the enzyme. N-desulphated heparin was a much poorer substrate for the enzyme than N-desulphated heparan sulphate suggesting that properties of the substrate other than available glucosaminyl residues influenced enzyme activity. N-acetylation of N-desulphated heparin and N-desulphated heparan sulphate reduced their sulphate acceptor properties so it was unlikely that the N-acetyl groups of heparan sulphate facilitated its sulphatiion. Direct evidence for the transfer of [35S]sulphate to amino groups of N-desulphated haparan sulphate was obtained by subsequent isolation of glucosamine N-[35S]sulphate from heparan [35S]sulphate product. This was made possible through the use of a flavobacterial enzyme preparation which contained “heparitinase” activity but had been essentially freed of sulphatases. Attempts to transfer [35S]sulphate to glucosamine or N-acetylglucosamine were unsuccessfull.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号