共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Cell metabolism》2022,34(9):1229-1231
3.
By cloning the HR-1 Burkitt lymphoma line, we previously uncovered two distinct biological variants of nontransforming Epstein-Barr virus (EBV). The most commonly cloned variant has a low rate of spontaneous viral synthesis and is unable to induce early antigen in Raji cells (EAI-). A rare variant spontaneously releases virus which is capable of inducing early antigen in Raji cells (EAI+). Since EAI- virus lacks heterogeneous DNA (het-) and EAI+ virus contains heterogeneous DNA (het+), we suggested that spontaneous viral synthesis and induction of early antigen are biological properties which correlate with the presence of het sequences. The present experiments provide three new lines of experimental evidence in favor of this hypothesis. (i) Revertant subclones of the EAI+ het+ variant which have lost the het DNA concomitantly lost EAI ability. Thus, het DNA is not stably associated with the cells as are the episomes. (ii) het DNA was acquired by two het- subclones of the HR-1 line after superinfection with EAI+ virus. After superinfection, these clones synthesized EAI+ het+ virus. Thus, het DNA may be maintained in the HR-1 line by cell-to-cell spread. (iii) Virus with het DNA activated full expression of endogenous latent EBV of the transforming phenotype in a line of immortalized neonatal lymphocytes designated X50-7. By use of restriction endonuclease polymorphisms unique to both the superinfecting and endogenous genomes, we show that the genome of the activated virus resembles that of the virus which was endogenous to X50-7 cells. This result suggests that het sequences result in transactivation of the latent EBV. het DNA had homology with EBV sequences which are not normally contiguous on the physical map of the genome. het DNA was always accompanied by the presence of DNA of nonheterogenous HR-1. Thus, het DNA is a form of "defective" EBV DNA. However, the biological effect of this defective DNA is to enhance rather than to interfere with EBV replication. This is a novel property of defective virus. 相似文献
4.
5.
Induction of the viral BZLF1 gene has previously been shown to be one of the first steps in the reactivation of Epstein-Barr virus (EBV). Using an EBV oriP episomal vector system, we have reconstituted the regulation of the promoter for BZLF1 on stably transfected episomes, mapped promoter elements required for that regulation, and investigated mechanisms that may control the switch between latency and the lytic cycle. Changes in histone acetylation at the promoter for the BZLF1 gene appear to be a key part of the reactivation mechanism of this herpesvirus. 相似文献
6.
7.
8.
Viral latency and transformation: the strategy of Epstein-Barr virus 总被引:24,自引:0,他引:24
Evidence that GAP is an effector of ras action can be summarized as follows: GAP interacts at a site on p21 defined genetically as the effector binding site. Regions of p21 that are nonessential for biological activity are nonessential for GAP interaction. GAP interacts with all known types of p21. (Upstream factors are expected to be specific for individual types). GAP interacts with p21 proteins (normal and mutant) in a GTP-dependent fashion. None of these constitute proof. It remains possible that GAP simply regulates p21-GTP levels, and binds to the same site as the true effector without transmitting a downstream signal. If indeed GAP mediates ras action, the question immediately arises as to the biochemical function of GAP itself. The requirement of ras proteins for membrane localization to exert their effects may be a valuable clue in the search for this function. Perhaps GAP is an enzyme (or is bound to an enzyme) that acts on membrane components in a p21-GTP-dependent manner and in doing so transmits signals to other downstream effectors. The ability of GAP to interact with many members of the ras family would allow many upstream signals to feed into this downstream pathway. Clearly, proof (or disproof) that GAP is downstream of ras is the next step toward clarification of this aspect of ras action; identification of biochemical activities associated with GAP (or the true ras effector) will, we hope, follow soon. 相似文献
9.
10.
The oncogenic Epstein-Barr virus (EBV) infects the majority of the human population without doing harm and establishes a latent infection in the memory B-cell compartment. To accomplish this, EBV hijacks B-cell differentiation pathways and uses its own viral genes to interfere with B-cell signalling to achieve life-long persistence. EBV latent membrane protein 2A (LMP2A) provides a surrogate B-cell receptor signal essential for cell survival and is believed to have a crucial role in the maintenance of latency by blocking B-cell activation which would otherwise lead to lytic EBV infection. These two functions demand tight control of LMP2A activity and expression levels. Based on recent insights in the function of LMP2B, an isoform of LMP2A, we propose a model for how LMP2B modulates the activity of LMP2A contributing to maintenance of EBV latency. 相似文献
11.
Oncogenic viruses reprogram host gene expression driving proliferation, ensuring survival, and evading the immune response. The recent appreciation of microRNAs (miRNAs) as small non-coding RNAs that broadly regulate gene expression has provided new insight into this complex scheme of host control. This review highlights the role of viral and cellular miRNAs during the latent and lytic phases of the EBV life cycle. 相似文献
12.
13.
14.
15.
One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at
least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular
defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing
mechanisms. 相似文献
16.
17.
18.
19.
Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals 下载免费PDF全文
Epstein-Barr virus (EBV) establishes a life-long infection in humans, with distinct viral latency programs predominating during acute and chronic phases of infection. Only a subset of the EBV latency-associated antigens present during the acute phase of EBV infection are expressed in the latently infected memory B cells that serve as the long-term EBV reservoir. Since the EBV immortalization program elicits a potent cellular immune response, downregulation of viral gene expression in the long-term latency reservoir is likely to facilitate evasion of the immune response and persistence of EBV in the immunocompetent host. Tissue culture and tumor models of restricted EBV latency have consistently demonstrated a critical role for methylation of the viral genome in maintaining the restricted pattern of latency-associated gene expression. Here we extend these observations to demonstrate that the EBV genomes in the memory B-cell reservoir are also heavily and discretely methylated. This analysis reveals that methylation of the viral genome is a normal aspect of EBV infection in healthy immunocompetent individuals and is not restricted to the development of EBV-associated tumors. In addition, the pattern of methylation very likely accounts for the observed inhibition of the EBV immortalization program and the establishment and maintenance of a restricted latency program. Thus, EBV appears to be the first example of a parasite that usurps the host cell-directed methylation system to regulate pathogen gene expression and thereby establish a chronic infection. 相似文献