首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Genetic and molecular analysis of the self-incompatibility locus (S-locus) of the crucifer Brassica has led to the characterization of a multigene family involved in pollen-stigma interactions. While the crucifer Arabidopsis thaliana does not have a self-incompatibility system, S-related sequences were detected in this species by cross-hybridization with Brassica DNA probes. In this paper, we show that an A. thaliana S-related sequence, designated AtS1, is expressed specifically in flower buds. Sequence analysis suggests that AtS1 encodes a secreted glycoprotein that is most similar to the Brassica S-locus related protein SLR1. As has been proposed for SLR1, this gene may be involved in determining some fundamental aspect of pollen-stigma interactions during pollination. The molecular and genetic advantages of the Arabidopsis system will provide many avenues for testing this hypothesis.  相似文献   

2.
TheSLR1 gene inBrassica is related both in DNA sequence and in pattern of expression to theS-locus glycoprotein (SLG) gene involved in the self-incompatibility mechanism which recognises and arrests the germination of self pollen. However,SLR1 shows minimal allelic variation and is expressed in both self-incompatible and compatibleBrassica lines and in related, self-compatible cruciferous plants. The function of the SLR1 protein is unknown. TheSLR1 gene was specifically ablated in self-incompatible and self-compatibleBrassica plants byAgrobacterium-mediated transformation with an antisense construct. Primary transformants and homozygous T2 progeny of both self-incompatibleB. oleracea and self-compatibleB. napus recipients were found to exhibit normal pollination responses despite having no detectable SLR1 glycoprotein. This shows that the high, wild-type level of SLR1 protein is not required to sustain the self-incompatibility reaction, nor is it necessary for successful intra-specific cross-pollination between compatible lines.  相似文献   

3.
4.
The polymerase chain reaction (PCR) is particularly well suited for the detection of rare sequences. Taking advantage of the recent isolation of sequences associated with stigma self-incompatibility inBrassica oleracea, we used PCR amplifications with primers synthesized to the S6 cDNA sequence, to demonstrate the presence of mRNA homologous to stigmaS-locus gene (SLG) in anthers during early microsporogenesis. In addition, otherS-locus-related (SLR) sequences were shown to be transcribed in sexual as well as in vegetative tissues (roots, leaves), suggesting that the SLG family might be involved not only in pollen-stigma recognition, but more generally in various forms of plant cell signalling processes. This information corroborates the recent discovery of a cDNA-deduced protein kinase from maize roots, whose extracellular receptor displays high homology withBrassica S-locus-specific glycoproteins.Communicated by H.F. Linskens  相似文献   

5.
6.
Self-incompatibility is a genetic mechanism enforcing cross-pollination in plants. Hazelnut (Corylus avellana L.) expresses the sporophytic type of self-incompatibility, for which the molecular genetic basis is characterized only in Brassica. The hypothesis that the hazelnut genome contains homologs of Brassica self-incompatibility genes was tested. The S-locus glycoprotein gene (SLG) and the kinase-encoding domain of the S-receptor kinase (SRK) gene of B. oleracea L. were used to probe blots of genomic DNA from six genotypes of hazelnut. Weak hybridization with the SLG probe was detected for all hazelnut genotypes tested; however, no hybridization was detected with PCR-generated probes corresponding to two conserved regions of the SLG gene. One of these PCR probes included the region of SLG encoding the 11 invariant cysteine residues that are an important structural feature of all S-family genes. The present evidence suggests that hazelnut DNA hybridizing to SLG differs significantly from the Brassica gene, and that the S-genes cloned from Brassica will not be useful for exploring self-incompatibility in hazelnut.  相似文献   

7.
8.
Sporophytic self-incompatibility of diploid Ipomoea trifida is controlled by a single multiallelic locus, the S-locus. To make a fine linkage map around the S-locus, AFLP (amplified restriction fragment length polymorphism) and AMF (AFLP-based mRNA fingerprinting) analyses were performed using bulked genomic DNA and mRNA, respectively, from several plants of each S-haplotype in a segregating population. Putative S-haplotype-specific fragments were obtained and subjected to RFLP analysis of genomic DNA to confirm genetic linkage to the S-locus. Eight DNA markers co-segregating with the S-haplotype were identified and mapped in close proximity to the S-locus. One of them, AAM-68, was the most tightly linked to the S-locus, because no recombinants were detected in the 873 plants of the segregating population analyzed. The S-locus region was defined to be within 1.25 cM in the linkage map. These markers are useful for positional cloning of the S-locus genes in Ipomoea.  相似文献   

9.
The male component of the self-incompatibility response in Brassica has recently been shown to be encoded by the S locus cysteine-rich gene (SCR). SCR is related, at the sequence level, to the pollen coat protein (PCP) gene family whose members encode small, cysteine-rich proteins located in the proteo-lipidic surface layer (tryphine) of Brassica pollen grains. Here we show that the Arabidopsis genome includes two large gene families with homology to SCR and to the PCP gene family, respectively. These genes are poorly predicted by gene-identification algorithms and, with few exceptions, have been missed in previous annotations. Based on sequence comparison and an analysis of the expression patterns of several members of each family, we discuss the possible functions of these genes. In particular, we consider the possibility that SCR-related genes in Arabidopsis may encode ligands for the S gene family of receptor-like kinases in this species.  相似文献   

10.
11.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

12.
While the molecular basis of sporophytic self-incompatibility (SSI) has been investigated extensively in the Brassicaceae, almost nothing is known about the molecular regulation of SSI in other families, such as the Asteraceae. In species of Brassica and in Arabidopsis lyrata, a stigma-specific serine-threonine receptor kinase (SRK) and its cognate ligand, a pollen coating-borne cysteine-rich protein (SCR/SP11), determine the female and male sides of the SSI response, respectively. Here we have used RT-PCR with degenerate primers to conserved regions of SRK to amplify three SRK-like gene fragments expressed in stigmas of Senecio squalidus (Asteraceae). The Senecio S-receptor-like kinase (SSRLK) sequences share ~43% amino acid sequence identity with Brassica SRK3 but higher amino acid sequence identity (~50%) with two Solanum bulbocastanum receptor-like kinase genes of unknown function. Despite expression in stigmas, all three SSRLKs were expressed at varying levels in floral and vegetative tissues. No allelic polymorphism was detected for the three SSRLKs in two S homozygous lines of S. squalidus or three other lines of S. squalidus carrying different S alleles. A full-length cDNA clone was obtained for SSRLK1 and its predicted amino acid sequence revealed significant structural differences to Brassica SRKs, most notably a major N-terminal truncation of 169 amino acids and the presence of just 8 conserved cysteine residues within the putative receptor domain instead of 12. Together, the sequence characteristics and expression characteristics of SSRLKs suggest that they are unlikely to be directly involved in the SSI response of S. squalidus. These findings are discussed in terms of the evolution of the SRK multigene family and the molecular basis of SSI in S. squalidus and the Asteraceae.  相似文献   

13.
14.
Brassica napus is an amphidiploid plant which is self-compatible even though it is derived from hybridisation of the self-incompatible species B. oleracea and B. campestris. Experiments were undertaken to establish if S-locus glycoprotein (SLG) genes exist in B. napus and whether these are expressed as in self-incompatible Brassica species. Two different stigma-specific cDNA sequences homologous to SLG genes were obtained from the B. napus cultivar Westar. One of these sequences, SLG WS1, displayed highest homology to class I SLG alleles, whereas the other, SLG WS2, showed greatest homology to class II SLG genes. Both were expressed at high levels in Westar stigmas following a developmental pattern typical of SLG genes in the self-incompatible diploids. We infer that they represent the endogenous SLG genes at the two homoeologous S-loci. The occurrence of normally expressed SLG genes and its relevance to the self-compatible phenotype of B. napus is discussed.  相似文献   

15.
The S-locus glycoprotein gene, SLG, which participates in the pollen-stigma interaction of self-incompatibility, and its unlinked homologue, SLR1, were analyzed in Raphanus sativus and three self-incompatible ornamental plants in the Brassicaceae. Among twenty-nine inbred lines of R. sativus, eighteen S haplotypes were identified on the basis of DNA polymorphisms detected by genomic Southern analysis using Brassica SLG probes. DNA fragments of SLG alleles specifically amplified from eight S haplotypes by PCR with class I SLG-specific primers showed different profiles following polyacrylamide gel electrophoresis, after digestion with a restriction endonuclease. The nucleotide sequences of the DNA fragments of these eight R. sativus SLG alleles were determined. Degrees of similarity of the nucleotide sequences to a Brassica SLG (S? 6 SLG) ranged from 85.6% to 91.9%. Amino acid sequences deduced from these had the twelve conserved cysteine residues and the three hypervariable regions characteristic of Brassica SLGs. Phylogenetic analysis of the SLG sequences from Raphanus and Brassica revealed that the Raphanus SLGs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs. These results suggest that diversification of the SLG alleles of Raphanus and Brassica occurred before differentiation of these genera. Although SLR1 sequences from Orychophragmus violaceus were shown to be relatively closely related to Brassica and Raphanus SLR1 sequences, DNA fragments that are highly homologous to the Brassica SLG were not detected in this species. Two other ornamental plants in the Brassicaceae, which are related more distantly to Brassica than Orychophragmus, also lacked sequences highly homologous to Brassica SLG genes. The evolution of self-incompatibility in the Brassicaceae is discussed.  相似文献   

16.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

17.
In Brassica, the S-locus glycoprotein (SLG) gene has been strongly implicated in the self-incompatibility reaction. Several alleles of this locus have been sequenced, and accordingly grouped as class I (corresponding to dominant S-alleles) and class II (recessive). We recently showed that a self-compatible (Sc) line of Brassica oleracea expressed a class II-like SLG (SLG-Sc) gene. Here, we report that the SLG-Sc glycoprotein is electrophoretically and immunochemically very similar to the recessive SLG-S15 glycoprotein, and is similarly expressed in stigmatic papillae. Moreover, by seed yield analysis, we observe that both alleles are associated with a self-compatibility response, in contrast with the other known recessive S haplotypes (S2 and S5). By genomic DNA blot analysis, we show the existence of molecular homologies between the Sc and S15 haplotypes, but demonstrate that they are not identical. On the other hand, we also report that the S2 haplotype expresses very low amounts of SLG glycoproteins, although it exhibits a self-incompatible phenotype. These results strongly question the precise role of the SLG gene in the molecular mechanisms that control the self-incompatibility reaction of Brassica.  相似文献   

18.
19.
We previously identified both self-incompatible and self-compatible plants in a natural population of self-incompatible Petunia axillaris subsp. axillaris, and found that all the self-compatible plants studied carried either SC1- or SC2-haplotype. Genetic crosses showed that SC2 was identical to S17 identified from another natural population of P. axillaris, except that its pollen function was defective, and that the pollen-part mutation in SC2 was tightly linked to the S-locus. Recent identification of the S-locus F-box gene (SLF) as the gene that controls pollen specificity in S-RNase-based self-incompatibility has prompted us to examine the molecular basis of this pollen-part mutation. We cloned and sequenced the S17-allele of SLF of P.axillaris, named PaSLF17, and found that SC2 SC2 plants contained extra restriction fragments that hybridized to PaSLF17 in addition to all of those observed in S17 S17 plants. Moreover, these additional fragments co-segregated with SC2. We used the SC2-specific restriction fragments as templates to clone an allele of PaSLF by PCR. To determine the identity of this allele, named PaSLFx, primers based on its sequence were used to amplify PaSLFalleles from genomic DNA of 40 S-homozygotes of P. axillaris, S1 S1 through S40 S40. Sequence comparison revealed that PaSLFx was completely identical with PaSLF19 obtained from S19 S19. We conclude that the S-locus of SC2 contained both S17-allele and the duplicated S19-allele of PaSLF. SC2 is the first naturally occurring pollen-part mutation of a solanaceous species that was shown to be associated with duplication of the pollen S. This finding lends support to the proposal, based on studies of irradiation-generated pollen-part mutants of solanaceous species, that duplication, but not deletion, of the pollen S, causes breakdown of pollen function.  相似文献   

20.
We report the genetic and physical analysis by pulse field gel electrophoresis (PFGE) in threeBrassica diploid genomes for a cluster of five genes characterized in a selected segment of 15 kb on chromosome 3 ofArabidopsis thaliana, encoding aBradyrhizobium CycJ homologue (At1), a rat p67 translation factor homologue (At2), an Em-like (early methionine) protein (At3), chlorophyll synthase (At4) and a yeast Sac1 homologue (A5). TheArabidopsis gene array was found to be conserved on a single linkage group in each of theBrassica genomes. However, partial complexes were found to be duplicated in other chromosome segments on the same or other linkage groups. Some of the At genes, which could not be genetically mapped because of lack of polymorphism, were assigned to their respective linkage groups by physical mapping. The presence of multiple copies of theA. thaliana gene cluster in the threeBrassica genomes further establishes their complex nature, which results from extensive duplication and chromosomal rearrangement. In general, genetic distances between the At genes agreed with values expected for the physical distances determined inBrassica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号