首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds.  相似文献   

2.
We have examined sediments from a fringing salt marsh in Maine to further understand marine CO metabolism, about which relatively little is known. Intact cores from the marsh emitted CO during dark oxic incubations, but emission rates were significantly higher during anoxic incubations, which provided evidence for simultaneous production and aerobic consumption in surface sediments. CO emission rates were also elevated when cores were exposed to light, which indicated that photochemical reactions play a role in CO production. A kinetic analysis of marsh surface sediments yielded an apparent K(m) of about 82 ppm, which exceeded values reported for well-aerated soils that consume atmospheric CO (65nM). Surface (0-0.2 cm depth interval) sediment slurries incubated under oxic conditions rapidly consumed CO, and methyl fluoride did not inhibit uptake, which indicated that neither ammonia nor methane oxidizers contributed to the observed activity. In contrast, aerobic CO uptake was inhibited by additions of readily available organic substrates (pyruvate, glucose and glycine), but not by cellulose. CO was also consumed by surface and sub-surface sediment slurries incubated under anaerobic conditions, but rates were less than during aerobic incubations. Molybdate and nitrate or nitrite, but not 2-bromoethanesulfonic acid, partially inhibited anaerobic uptake. These results suggest that sulfidogens and acetogens, but not dissimilatory nitrate reducers or methanogens, actively consume CO. Sediment-free plant roots also oxidized CO aerobically; rates for Spartina patens and Limonium carolinianum roots were significantly higher than rates for Spartina alterniflora roots. Thus plants may also impact CO cycling in estuarine environments.  相似文献   

3.
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

4.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   

5.
This study provides some results about microbial activity in salt marsh sediments. Microbial activity was determined by profiling extracellular enzyme activities in three Tagus estuary marshes and in two sediments horizons: surface layer (0–2 cm) and depth (8–10 cm). Five enzymatic activities were examined (β-glucosidase, cellulase, alkaline phosphatase, potential nitrification and nitrate reductase). All extracellular enzymatic activities were highest in the surface layer and decreased with depth. β-glucosidase and alkaline phosphatase prevailed both in surface sediments (1150 and 1200 ηmol h−1 g−1, respectively) and in deeper sediments (150 and 200 ηmol h−1 g−1, respectively). Microbial activities differed significantly between salt marshes. The marsh location in the estuary seemed to contribute to these differences: marshes located in the proximity of urbanised and industrial areas had higher microbial activities.  相似文献   

6.
Mesophilic Crenarchaeota (also known as Thaumarchaeota) are ubiquitous and abundant in marine habitats. However, very little is known about their metabolic function in situ. In this study, salt marsh sediments from New Jersey were screened via stable isotope probing (SIP) for heterotrophy by amending with a single 13C-labeled compound (acetate, glycine or urea) or a complex 13C-biopolymer (lipids, proteins or growth medium (ISOGRO)). SIP incubations were done at two substrate concentrations (30–150 μM; 2–10 mg ml−1), and 13C-labeled DNA was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes. To test for autotrophy, an amendment with 13C-bicarbonate was also performed. Our SIP analyses indicate salt marsh crenarchaea are heterotrophic, double within 2–3 days and often compete with heterotrophic bacteria for the same organic substrates. A clone library of 13C-amplicons was screened to find matches to the 13C-TRFLP peaks, with seven members of the Miscellaneous Crenarchaeal Group and seven members from the Marine Group 1.a Crenarchaeota being discerned. Some of these crenarchaea displayed a preference for particular carbon sources, whereas others incorporated nearly every 13C-substrate provided. The data suggest salt marshes may be an excellent model system for studying crenarchaeal metabolic capabilities and can provide information on the competition between crenarchaea and other microbial groups to improve our understanding of microbial ecology.  相似文献   

7.
Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at approximately 2-muM levels as [C]DMS, metabolism by sediments resulted in a CH(4)/CO(2) ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block CO(2) production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a "noncompetitive" substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [C]-DMS to yield a CH(4)/CO(2) ratio of approximately 2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.  相似文献   

8.
9.
Summary The use of organotins for agricultural and industrial purposes and in the marine environment has been increasing steadily for more than 20 years. Recently, reliable methodologies have been developed to permit quantification of individual molecular species of organotins in cultures and in the environment. Particular attention has been given to methyltins which can be formed abiotically and by microorganisms, and to tributyltins which are toxic components of effective antifouling paints. In the aquatic environment tin, tributyltins and other organotins accumulate in the surface microlayer, in sediments, and on suspended particulates. Tin compounds are toxic to a variety of organisms and some aquatic organisms can bioaccumulate them. When tin compounds, particularly di-or tri-substituted tins, enter an ecosystem, a portion of the microbial population is killed. Among the survivors are organisms which can methylate inorganic or organic tins, but the relative contribution of biotic and abiotic mechanisms is not clear. While many details of methylations and demethylations need to be worked out, it is clear that transformations of tins can influence the toxicity, volatility and mobility of tin in natural ecosystems. Tributyltins can be debutylated by microorganisms, and hydroxybutyl tins may be intermediates, as they are in mammalian systems. Little is known of the potential and probable microbial transformations of other economically important organotins, but the transformations should be studied for they may have industrial and environmental importance.  相似文献   

10.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO42–), elemental sulfur (S0), polysulfide (Sn2–), hydrogen sulfide (HS: H2S + HS + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S22– HS, and FeS, but not between35S labeled SO42– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS). The isotope exchange between S0 and Sn2–) reached 50% of equilibrium within < 2 min while exchange between S22– and HS approached equilibrium within 0.5-1 h. In all the experiments HS, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S22– and/or HS. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature.  相似文献   

11.
Microbial desulfurization of organic sulfur compounds in petroleum   总被引:26,自引:0,他引:26  
Sulfur removal from petroleum is important from the standpoint of the global environment because the combustion of sulfur compounds leads to the production of sulfur oxides, which are the source of acid rain. As the regulations for sulfur in fuels become more stringent, the existing chemical desulfurizations are coming inadequate for the "deeper desulfurization" to produce lower-sulfur fuels without new and innovative processes. Biodesulfurization is rising as one of the candidates. Several microorganisms were found to desulfurize dibenzothiophene (DBT), a representative of the organic sulfur compounds in petroleum, forming a sulfur-free compound, 2-hydroxybiphenyl. They are promising as biocatalysts in the microbial desulfurization of petroleum because without assimilation of the carbon content, they remove only sulfur from the heterocyclic compounds which is refractory to conventional chemical desulfurization. Both enzymological and molecular genetic studies are now in progress for the purpose of obtaining improved desulfurization activity of organisms. The genes involved in the sulfur-specific DBT desulfurization were identified and the corresponding enzymes have been investigated. From the practical point of view, it has been proved that the microbial desulfurization proceeds in the presence of high concentrations of hydrocarbons, and more complicated DBT analogs are also desulfurized by the microorganisms. This review outlines the progress in the studies of the microbial desulfurization from the basic and practical point of view.  相似文献   

12.
13.
14.
To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one another and with macrofaunal burrow abundance, indicating that coupled nitrification-denitrification was enhanced by macrofaunal burrowing activity. Ammonia monooxygenase (amoA) gene copy numbers were used to estimate the ammonia-oxidizing bacterial population size (5.6 x 10(4) to 1.3 x 10(6) g of wet sediment(-1)), which correlated with nitrification potentials and was 1 order of magnitude higher for TS and CB than for SS. TS and CB sediments also had higher Fe(III) content, higher Fe(III)-to-total reduced sulfur ratios, higher Fe(III) reduction rates, and lower dissolved sulfides than SS sediments. Iron(III) content and reduction rates were positively correlated with nitrification and denitrification potential and amoA gene copy number. Laboratory slurry incubations supported field data, confirming that increased amounts of Fe(III) relieved sulfide inhibition of nitrification. We propose that macrofaunal burrowing and high concentrations of Fe(III) stimulate nitrifying bacterial populations, and thus may increase nitrogen removal through coupled nitrification-denitrification in salt marsh sediments.  相似文献   

15.
16.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Spartina maritima was tested in conjunction with low molecular weight organic acids (LMWOA), in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Three different LMWOA (citric acid, malic acid and acetic acid) were applied to contaminated intact cores of S. maritima colonized sediment and several heavy metals (Cd, Zn, Pb, Cu, Cr and Ni) were analyzed in sediment and plant parts. Acetic acid application proved to be the most efficient, enhancing greatly the uptake of all metals analyzed. Citric acid also showed good results, while malic acid proved to be very inefficient in most of the cases. The highest enhancement was observed for Cr with a 10-fold increase of the uptake upon application of acetic acid, while improving the Pb uptake proved to be the most difficult, probably due to its low solubility.  相似文献   

17.
Based on phylogenetic analysis of clones retrieved from two nifH gene clone libraries that were created using cDNA from suboxic sediment samples obtained from areas densely vegetated with the high-salt marsh plant Spartina patens, a primer set was designed to target nitrogen-fixing bacteria with sequence similarities to members of the epsilon subclass of Proteobacteria. Nested PCR, denaturing gel electrophoresis, and subsequent sequence analysis of reamplified fragments confirmed the specificity of the primer set by retrieving nifH sequences of only putative members of the epsilon subclass of Proteobacteria, all of which were characterized by a highly divergent 27- or 36-bp insertion in both DNA and cDNA.  相似文献   

18.
Microbial community dynamics in wetlands microcosms emended with commercial products (surfactant, a biological agent, and nutrients) designed to enhance bioremediation was followed for 3 months. The effectiveness of enhanced degradation was assessed by determining residual concentrations of individual petroleum hydrocarbons by GC/MS. The size and composition of the sediment microbial community was assessed using a variety of indices, including bacterial plate counts, MPNs, and DNA hybridizations with domain- and group-specific oligonucleotide probes. The addition of inorganic nutrients was the most effective treatment for the enhancement of oil degradation, resulting in marked degradation of petroleum alkanes and a lesser extent of degradation of aromatic oil constituents. The enhanced degradation was associated with increases in the amount of extractable microbial DNA and Streptomyces in the sediment, although not with increased viable counts (plate counts, MPN). Bacteria introduced with one of the proprietary products were still detected in the microcosms after 3 months, but were not a major quantitative constituent of the community. The biological product enhanced oil degradation relative to the control, but to a lesser extent than the nutrient additions alone. In contrast, application of the surfactant to the oil-impacted sediment decreased oil degradation. Journal of Industrial Microbiology & Biotechnology (2001) 27, 72–79. Received 18 March 2001/ Accepted in revised form 09 June 2001  相似文献   

19.
In many temperate estuaries, mats of opportunistic macroalgae accumulate on intertidal flats and in lower elevations of salt marshes, perhaps playing a role in linking water column nitrogen (N) supply to these benthic habitats. Using a flow-through seawater system and tidal simulator, we varied densities (equivalent to 0, 1, 2, or 3 kg m−2 wet mass) of 15N-labelled macroalgae (Enteromorpha intestinalis) on estuarine sediments in microcosms with/without pickleweed (Salicornia virginica) to assess N transfers from algae. In the 6-week experiment, macroalgal biomass increased from initial levels in the lower density treatments but all algae lost N mass, probably through both leakage and decomposition. With all densities of algae added, sediments and pickleweed became enriched in 15N. With increasing mat density, losses of algal N mass increased, resulting in stepwise increases in 15N labeling of the deeper sediments and pickleweed. While we did not detect a growth response in pickleweed with macroalgal addition during the experiment, N losses from algal mats that persist over many months and/or recur each year could be important to the mineral nutrition of N-limited marsh plants. We conclude that N dynamics of intertidal sediments and lower salt marsh vegetation are linked to the N pools of co-occurring macroalgae and that further study is needed to assess the magnitude and importance of N transfers.  相似文献   

20.
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号