共查询到20条相似文献,搜索用时 0 毫秒
1.
Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments 总被引:1,自引:0,他引:1
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds. 相似文献
2.
Selected microbial parameters were monitored in sediments from a pristine and an oil-field salt marsh. Although numbers of hydrocarbonoclastic bacteria and fungi were significantly greater in the oil field, the values did not show a strong correlation with levels of hydrocarbons (r = 0.43 and r = 0.49, respectively). However, a high correlation was noted between ratios of hydrocarbonoclastic and total aerobic heterotrophic bacteria and levels of hydrocarbons as well as the relative concentration of hydrocarbons (ratio of hydrocarbons to chloroform extractables) (r = 0.87 and r = 0.77, respectively). Data suggest that this first ratio is a more valid microbial indicator of hydrocarbon abundance than other factors examined. Significant differences in the ratio of pigmented to total colony-forming units, the ratio of different to total colony-forming units, and the diversity index were noted between the natural and oil-field marsh. It is suggested that the presence of hydrocarbons alters the relative abundance of the most predominant aerobic heterotrophic bacteria. 相似文献
3.
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments,
the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative
measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average
of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores
incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that
methanogens represent a small component of total microbial lipid synthesis in anoxic sediments.
present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA 相似文献
4.
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments,
the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative
measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average
of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores
incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that
methanogens represent a small component of total microbial lipid synthesis in anoxic sediments.
present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA 相似文献
5.
King GM 《FEMS microbiology ecology》2007,59(1):2-9
We have examined sediments from a fringing salt marsh in Maine to further understand marine CO metabolism, about which relatively little is known. Intact cores from the marsh emitted CO during dark oxic incubations, but emission rates were significantly higher during anoxic incubations, which provided evidence for simultaneous production and aerobic consumption in surface sediments. CO emission rates were also elevated when cores were exposed to light, which indicated that photochemical reactions play a role in CO production. A kinetic analysis of marsh surface sediments yielded an apparent K(m) of about 82 ppm, which exceeded values reported for well-aerated soils that consume atmospheric CO (65nM). Surface (0-0.2 cm depth interval) sediment slurries incubated under oxic conditions rapidly consumed CO, and methyl fluoride did not inhibit uptake, which indicated that neither ammonia nor methane oxidizers contributed to the observed activity. In contrast, aerobic CO uptake was inhibited by additions of readily available organic substrates (pyruvate, glucose and glycine), but not by cellulose. CO was also consumed by surface and sub-surface sediment slurries incubated under anaerobic conditions, but rates were less than during aerobic incubations. Molybdate and nitrate or nitrite, but not 2-bromoethanesulfonic acid, partially inhibited anaerobic uptake. These results suggest that sulfidogens and acetogens, but not dissimilatory nitrate reducers or methanogens, actively consume CO. Sediment-free plant roots also oxidized CO aerobically; rates for Spartina patens and Limonium carolinianum roots were significantly higher than rates for Spartina alterniflora roots. Thus plants may also impact CO cycling in estuarine environments. 相似文献
6.
This study provides some results about microbial activity in salt marsh sediments. Microbial activity was determined by profiling
extracellular enzyme activities in three Tagus estuary marshes and in two sediments horizons: surface layer (0–2 cm) and depth
(8–10 cm). Five enzymatic activities were examined (β-glucosidase, cellulase, alkaline phosphatase, potential nitrification and nitrate reductase). All extracellular enzymatic
activities were highest in the surface layer and decreased with depth. β-glucosidase and alkaline phosphatase prevailed both in surface sediments (1150 and 1200 ηmol h−1 g−1, respectively) and in deeper sediments (150 and 200 ηmol h−1 g−1, respectively). Microbial activities differed significantly between salt marshes. The marsh location in the estuary seemed
to contribute to these differences: marshes located in the proximity of urbanised and industrial areas had higher microbial
activities. 相似文献
7.
海岸盐沼湿地土壤硫循环中的微生物及其作用 总被引:8,自引:0,他引:8
硫及硫化合物的动态循环是海岸盐沼湿地的重要组成部分,硫酸盐还原菌(SRB)和硫氧化菌(SOB)是推动硫循环的重要微生物。硫酸盐还原菌把硫酸盐还原为硫化物,同时消耗土壤中的有机物质;硫氧化菌把还原性硫化合物氧化为硫酸盐,缓解土壤中硫化物的积累,它们共同维持硫循环的动态平衡。本文综述了海岸盐沼湿地土壤中硫的存在形式、硫的地球化学循环以及在硫循环过程中扮演重要角色的硫酸盐还原菌和硫氧化菌的生物多样性、活性测定方法及其生态学意义等的最新研究进展,并提出了存在的问题及研究展望。 相似文献
8.
Mesophilic Crenarchaeota (also known as Thaumarchaeota) are ubiquitous and abundant in marine habitats. However, very little is known about their metabolic function in situ. In this study, salt marsh sediments from New Jersey were screened via stable isotope probing (SIP) for heterotrophy by amending with a single 13C-labeled compound (acetate, glycine or urea) or a complex 13C-biopolymer (lipids, proteins or growth medium (ISOGRO)). SIP incubations were done at two substrate concentrations (30–150 μM; 2–10 mg ml−1), and 13C-labeled DNA was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes. To test for autotrophy, an amendment with 13C-bicarbonate was also performed. Our SIP analyses indicate salt marsh crenarchaea are heterotrophic, double within 2–3 days and often compete with heterotrophic bacteria for the same organic substrates. A clone library of 13C-amplicons was screened to find matches to the 13C-TRFLP peaks, with seven members of the Miscellaneous Crenarchaeal Group and seven members from the Marine Group 1.a Crenarchaeota being discerned. Some of these crenarchaea displayed a preference for particular carbon sources, whereas others incorporated nearly every 13C-substrate provided. The data suggest salt marshes may be an excellent model system for studying crenarchaeal metabolic capabilities and can provide information on the competition between crenarchaea and other microbial groups to improve our understanding of microbial ecology. 相似文献
9.
Dimethyl sulfide metabolism in salt marsh sediments 总被引:4,自引:0,他引:4
Ronald P. Kiene 《FEMS microbiology letters》1988,53(2):71-78
Abstract Anoxic sediment slurries prepared from Spartina salt marsh soils contained dimethyl sulfide (DMS) at concentrations ranging from 1 to 10 μM. DMS was produced in slurries over the initial 1–24 h incubation. After the initial period of production, DMS decreased to undetectable levels and methane thiol (MSH) was produced. Inhibition of methanogenesis caused a 20% decrease in the rate of DMS consumption, while inhibition of sulfate reduction caused a 80% decrease in DMS consumption. When sulfate reduction and methanogenesis were simultaneously inhibited, DMS did not decrease. DMS contributed about 28% to the methane production rate, while DMS probably contributed only 1% or less to the sulfate reduction rate. Incubation of the sediment slurries under an atmosphere of air resulted in similar DMS consumption compared to anaerobic incubations, but MSH and CH4 were not evolved.
Sediments from the marsh released significant quantities of DMS when treated with cold alkali, indicating that potentially significant sources of DMS existed in the sediments. Values of base-hydrolyzable DMS as high as 190 μmol per liter of sediment were observed near the sediment surface, and values always decreased with depth in the sediment. Simple flux experiments with small intact sediment cores, showed that DMS was emitted from the marsh surface when cores were injected with glutaraldehyde or molybdate and 2-bromoethanesulfonate (BES), but nit when cores were left uninhibited. These results showed that DMS was readily metabolized by microbes in marsh sediments and that this metabolism may be responsible for reducing the emission of DMS from the marsh surface. 相似文献
Sediments from the marsh released significant quantities of DMS when treated with cold alkali, indicating that potentially significant sources of DMS existed in the sediments. Values of base-hydrolyzable DMS as high as 190 μmol per liter of sediment were observed near the sediment surface, and values always decreased with depth in the sediment. Simple flux experiments with small intact sediment cores, showed that DMS was emitted from the marsh surface when cores were injected with glutaraldehyde or molybdate and 2-bromoethanesulfonate (BES), but nit when cores were left uninhibited. These results showed that DMS was readily metabolized by microbes in marsh sediments and that this metabolism may be responsible for reducing the emission of DMS from the marsh surface. 相似文献
10.
The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments 总被引:4,自引:4,他引:4
Robert W. Howarth 《Biogeochemistry》1984,1(1):5-27
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor. 相似文献
11.
We employ complementary field and laboratory‐based incubation techniques to explore the geochemical environment where siderite concretions are actively forming and growing, including solid‐phase analysis of the sediment, concretion, and associated pore fluid chemistry. These recently formed siderite concretions allow us to explore the geochemical processes that lead to the formation of this less common carbonate mineral. We conclude that there are two phases of siderite concretion growth within the sediment, as there are distinct changes in the carbon isotopic composition and mineralogy across the concretions. Incubated sediment samples allow us to explore the stability of siderite over a range of geochemical conditions. Our incubation results suggest that the formation of siderite can be very rapid (about two weeks or within 400 hr) when there is a substantial source of iron, either from microbial iron reduction or from steel material; however, a source of dissolved iron is not enough to induce siderite precipitation. We suggest that sufficient alkalinity is the limiting factor for siderite precipitation during microbial iron reduction while the lack of dissolved iron is the limiting factor for siderite formation if microbial sulfate reduction is the dominant microbial metabolism. We show that siderite can form via heated transformation (at temperature 100°C for 48 hr) of calcite and monohydrocalcite seeds in the presence of dissolved iron. Our transformation experiments suggest that the formation of siderite is promoted when carbonate seeds are present. 相似文献
12.
Kiene RP Oremland RS Catena A Miller LG Capone DG 《Applied and environmental microbiology》1986,52(5):1037-1045
Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at approximately 2-muM levels as [C]DMS, metabolism by sediments resulted in a CH(4)/CO(2) ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block CO(2) production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a "noncompetitive" substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [C]-DMS to yield a CH(4)/CO(2) ratio of approximately 2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats. 相似文献
13.
14.
Joseph J. Cooney 《Journal of industrial microbiology & biotechnology》1988,3(4):195-204
Summary The use of organotins for agricultural and industrial purposes and in the marine environment has been increasing steadily for more than 20 years. Recently, reliable methodologies have been developed to permit quantification of individual molecular species of organotins in cultures and in the environment. Particular attention has been given to methyltins which can be formed abiotically and by microorganisms, and to tributyltins which are toxic components of effective antifouling paints. In the aquatic environment tin, tributyltins and other organotins accumulate in the surface microlayer, in sediments, and on suspended particulates. Tin compounds are toxic to a variety of organisms and some aquatic organisms can bioaccumulate them. When tin compounds, particularly di-or tri-substituted tins, enter an ecosystem, a portion of the microbial population is killed. Among the survivors are organisms which can methylate inorganic or organic tins, but the relative contribution of biotic and abiotic mechanisms is not clear. While many details of methylations and demethylations need to be worked out, it is clear that transformations of tins can influence the toxicity, volatility and mobility of tin in natural ecosystems. Tributyltins can be debutylated by microorganisms, and hydroxybutyl tins may be intermediates, as they are in mammalian systems. Little is known of the potential and probable microbial transformations of other economically important organotins, but the transformations should be studied for they may have industrial and environmental importance. 相似文献
15.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO4
2–), elemental sulfur (S0), polysulfide (Sn
2–), hydrogen sulfide (HS–: H2S + HS– + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S2
2– HS–, and FeS, but not between35S labeled SO4
2– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS–). The isotope exchange between S0 and Sn
2–) reached 50% of equilibrium within < 2 min while exchange between S2
2– and HS– approached equilibrium within 0.5-1 h. In all the experiments HS–, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S2
2– and/or HS–. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature. 相似文献
16.
Microbial desulfurization of organic sulfur compounds in petroleum 总被引:26,自引:0,他引:26
Sulfur removal from petroleum is important from the standpoint of the global environment because the combustion of sulfur compounds leads to the production of sulfur oxides, which are the source of acid rain. As the regulations for sulfur in fuels become more stringent, the existing chemical desulfurizations are coming inadequate for the "deeper desulfurization" to produce lower-sulfur fuels without new and innovative processes. Biodesulfurization is rising as one of the candidates. Several microorganisms were found to desulfurize dibenzothiophene (DBT), a representative of the organic sulfur compounds in petroleum, forming a sulfur-free compound, 2-hydroxybiphenyl. They are promising as biocatalysts in the microbial desulfurization of petroleum because without assimilation of the carbon content, they remove only sulfur from the heterocyclic compounds which is refractory to conventional chemical desulfurization. Both enzymological and molecular genetic studies are now in progress for the purpose of obtaining improved desulfurization activity of organisms. The genes involved in the sulfur-specific DBT desulfurization were identified and the corresponding enzymes have been investigated. From the practical point of view, it has been proved that the microbial desulfurization proceeds in the presence of high concentrations of hydrocarbons, and more complicated DBT analogs are also desulfurized by the microorganisms. This review outlines the progress in the studies of the microbial desulfurization from the basic and practical point of view. 相似文献
17.
David J. Burdige 《FEMS microbiology letters》1991,85(3):211-232
18.
Salt marshes are very important areas for biogeochemical cycling, sediment accretion, pollution filtration and retention and erosion and stabilization of the river margins. The high organic matter content in the salt marsh plant sediments along with the radial oxygen diffusion provided by these halophyte root systems gather the ideal conditions for the development of a microbial rhizosphere community. Due to the quick feedback of the microbial communities to an environmental change, these organisms become important monitors for environmental impact assessment. A Salt marsh Sediment Microbial Index (SSMI) that reflected physical–chemical and microbial parameters was applied to plant rhizosphere sediments of five salt marshes from three important water bodies from Portugal. The SSMI revealed to be plant-independent evaluating efficiently the different marshes according to their maturity degree and disturbance influence. Mature salt marshes SSMI classification grouped all the systems at this development stage, while the younger salt marshes are classified in different groups according to their evolution degree. Also the impact degree is reflected at this level discriminating also the more adversely impacted salt marshes. Being a multi-metric index, the SSMI sub-metrics are also susceptible of ecological interpretation, giving important backstage information about the underlying biogeochemical cycling processes. 相似文献
19.
20.
Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments 总被引:1,自引:0,他引:1
Dollhopf SL Hyun JH Smith AC Adams HJ O'Brien S Kostka JE 《Applied and environmental microbiology》2005,71(1):240-246
To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one another and with macrofaunal burrow abundance, indicating that coupled nitrification-denitrification was enhanced by macrofaunal burrowing activity. Ammonia monooxygenase (amoA) gene copy numbers were used to estimate the ammonia-oxidizing bacterial population size (5.6 x 10(4) to 1.3 x 10(6) g of wet sediment(-1)), which correlated with nitrification potentials and was 1 order of magnitude higher for TS and CB than for SS. TS and CB sediments also had higher Fe(III) content, higher Fe(III)-to-total reduced sulfur ratios, higher Fe(III) reduction rates, and lower dissolved sulfides than SS sediments. Iron(III) content and reduction rates were positively correlated with nitrification and denitrification potential and amoA gene copy number. Laboratory slurry incubations supported field data, confirming that increased amounts of Fe(III) relieved sulfide inhibition of nitrification. We propose that macrofaunal burrowing and high concentrations of Fe(III) stimulate nitrifying bacterial populations, and thus may increase nitrogen removal through coupled nitrification-denitrification in salt marsh sediments. 相似文献