首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
药用植物内生放线菌具有合成天然活性化合物的潜力,放线菌新种是寻找新型抗生素先导化合物的一个重要来源。【目的】挖掘药用植物地黄内生放线菌资源,并对地黄轮纹病拮抗菌株leaf-16进行新种鉴定。【方法】本研究采用五步消毒法分离河南道地药材地黄的内生放线菌,以地黄轮纹病原真菌草茎点霉(Phoma herbarum)为指示菌,采用平板对峙法筛选对该病菌有抑制作用的菌株,16S rRNA基因测序发现一株抗地黄轮纹病的放线菌新种leaf-16。通过形态、生理生化、细胞壁化学组分和分子生物学等特征对菌株leaf-16进行多相分类学鉴定。【结果】经平板对峙实验得到8株抗地黄轮纹病的放线菌,其中菌株leaf-16经16S rRNA基因测序、形态比较、生理生化、化学组分和分子生物学以及DNA-DNA杂交分析,确定菌株leaf-16为1株链霉菌新种,并命名为Streptomyces folium。【结论】菌株leaf-16为1株链霉菌新种,具有抑制地黄轮纹病原真菌的活性,为进一步分离新型抗地黄轮纹病的生物制剂奠定物质基础。  相似文献   

2.
从采自成都地区的中药植物连翘Forsythia suspense和水茄Solanum torvum的根部分离到14株内生放线菌。活性筛选表明,10株菌的发酵粗提物具有不同程度的抗肿瘤活性,占全部菌株的71%;3株菌具有抗细菌活性,其中菌株A263具有较强的细胞毒活性和广谱抗细菌活性。基于16S rRNA基因部分序列的相似性分析表明,菌株A275属于克里贝拉菌属Kribbella,其余13株属于链霉菌属Streptomyces。多种生物合成基因的筛查实验表明,5株菌同时具有PKS-I、PKS-II、NRPS型基因,其中A255和A263还具有3,5-AHBA合酶基因,但仅A275具有oxyB基因。结果可以推测,链霉菌是这2种中药植物根部的优势内生放线菌,生物合成基因的PCR筛查能极大地弥补传统活性筛选模型的不足,内生放线菌具有产生丰富生物活性化合物的巨大潜力。  相似文献   

3.
Endophytes are described as microorganisms that colonize the internal tissues of healthy plants without causing any disease. Endophytes isolated from medicinal plants have been attracting considerable attention due to their high biodiversity and their predicted potential to produce a plethora of novel compounds. In this study, an attempt was made to isolate endophytes from rhizomes of five medicinal plants of Zingiberaceae family, and to screen the endophytes for L-asparaginase activity. In total, 50 endophytes (14 bacteria, 22 actinomycetes, and 14 fungi) were isolated from Alpinia galanga, Curcuma amada, Curcuma longa, Hedychium coronarium, and Zingiber officinale; of these, 31 endophytes evidenced positive for L-asparaginase production. All the L-asparaginase-positive isolates showed L-asparaginase activity in the range of 54.17–155.93 U/mL in unoptimized medium. An endophytic fungus isolated from Curcuma amada, identified as Talaromyces pinophilus, was used for further experiments involving studies on the effect of certain nutritional and nonnutritional factors on L-asparaginase production in submerged fermentation. Talaromyces pinophilus initially gave an enzyme activity of 108.95 U/mL, but gradually reduced to 80 U/mL due to strain degeneration. Perhaps this is the first report ever on the production of L-asparaginase from endophytes isolated from medicinal plants of Zingiberaceae family.  相似文献   

4.
丹参、黄精内生放线菌的分离及遗传多样性分析   总被引:1,自引:0,他引:1  
从四川遂宁地区采集了丹参、黄精2种道地中药材, 样品通过0.87%次氯酸钠不同时间梯度消毒, 用组织法和匀浆法对植株进行处理, 并在HV、G2、S等培养基中加入不同浓度的重铬酸钾和萘啶酮酸以抑制非放线菌的生长, 确定了分离中药材内生放线菌比较适宜的方法。经分离、纯化得到52株菌落大小、形态、颜色各异的内生放线菌。选取其中12株代表菌株进行16S rRNA PCR-RFLP分析, 在88%的相似水平上, 被分为5个遗传类型, 表明了药用植物内生放线菌的遗传多样性。  相似文献   

5.
As part of a research program whose aim is to determine the diversity of streptomycetes in order to discover new bioactive secondary metabolites, rhizosphere soils of three indigenous plants were analyzed. A total of 55 actinomycetes were isolated using three different medium from the samples. The rhizospheric soil of the plant Aethionema dumanii gave the highest number of actinomycetes, i.e., 42% versus 27% and 31% for the soils from Salvia aytachii and Achillea ketenoglui, respectively. The AIA is the most favorable medium for the isolation of the actinomycetes from different rhizospheric soils. 16S rDNA sequence analysis revealed that while some isolates belong to different cluster groups such as Streptomyces lydicus, S. rochei, S. microflavus, S. griseoflavus, S. albidoflavus and S. violaceusniger, the majority of the sequences did not considerable clustered with the member of different Streptomyces groups. The in vitro antimicrobial activities of the crude organic and aqueous extracts of isolates were screened using a disc diffusion assay against a panel of bacteria and C. albicans. A total of 22 isolates showed antimicrobial activity. The antibacterial action of the extracts is more pronounced on Gram-positive than on Gram-negative bacteria in most cases. About 18% of the actinomycetes showed also antifungal activity. Study of the influence of two different culture media on production of bioactive molecules showed that the higher antimicrobial activity was obtained in M2 when compared to TSB. The results from this study provide evidence that the streptomycetes in the rhizosphere soils could be promising sources for antimicrobial bioactive agents.  相似文献   

6.
Five thousand actinomycetes were isolated from soil samples collected from rainforests in Singapore and the generic identities of these isolates were determined by using a procedure that combined morphological, chemotaxonomic and 16S rDNA sequence-based phylogenetic analyses. Actinomycetes belonging to a total of 36 genera were identified. The most abundant isolates are members of Streptomyces, Micromonospora, Actinoplanes, Actinomadura, Nonomuria, Nocardia and Streptosporangium. By phylogenetic analysis of 16S rDNA sequences of our isolates together with those of known actinomycete species, we also evaluated the species diversity of several genera including Streptomyces, Micromonospora, Nonomuria, and Actinomadura. We found that: first, the tropical isolates are present in most clades represented by known species; and second, many tropical isolates form new clades distant from the known species, indicating the presence of unidentified taxa at both species and genus levels. Based on these results, we conclude that actinomycete diversity in the tropical rainforest is very great and should represent an excellent source for discovery of novel bioactive compounds. Received 17 March 1999/ Accepted in revised form 24 June 1999  相似文献   

7.
【目的】分离四川省各个地区川楝内生放线菌并研究其物种多样性。【方法】应用7种选择性分离培养基分离样品根、茎、叶、树皮和果实中的内生放线菌,采用16SrRNA基因RFLP分析代表菌株多样性。【结果】研究共获得403株内生放线菌。不同地点、不同植株部位、不同培养基分离得到的内生放线菌数目均有差异。广元采集的样品分离得到的数目最多,为86株;最少的是绵阳,仅有12株。从植物表皮中分离到148株放线菌,占获得菌株总数的36.7%;而从果中分离到31株,仅占获得菌株总数的7.6%;虽然从根部分离到的数量也很少,但是其出菌率却是最高的。5号和3号培养基的分离效果最为理想。16S rRNA基因RFLP分析结果显示所有供试菌株在68%的相似性上聚在一起,在84%的相似水平上分成了10个遗传类型。代表菌株的16SrRNA基因序列测定及系统发育分析结果表明:分离得到的放线菌包括4个属,分别是链霉菌属(Streptomyces)、北里孢菌属(Kitasatospora)、节杆菌属(Arthrobacter)、克里布所菌属(Kribbella)。其中,链霉菌是优势类群,占代表菌株数目的比例高达91%,而稀有放线菌的比例只有9%。【结论】研究发现的川楝内生放线菌主要属于链霉菌属(Streptomyces)、北里孢菌属(Kitasatospora)、节杆菌属(Arthrobacter)、克里布所菌属(Kribbella)。  相似文献   

8.

Medicinal plants are a rich source of natural products used to treat many diseases; therefore, they are the basis for a new drug discovery. Plants are capable of generating different bioactive secondary metabolites, but a large amount of botanical material is often necessary to obtain small amounts of the target substance. Nowadays, many medicinal plants are becoming rather scarce. For this reason, it is important to point out the interactions between endophytic microorganisms and the host plant, because endophytes are able to produce highly diverse compounds, including those from host plants that have important biological activities. Thence, this review aims at presenting the richness in bioactive compounds of the medicinal plants from Tabebuia and Handroanthus genera, as well as important aspects about endophyte-plant interactions, with emphasis on the production of bioactive compounds by endophytic fungi, which has been isolated from various medicinal plants for such a purpose. Furthermore, bio-prospection of natural products synthesized by endophytes isolated from the aforementioned genera used in traditional medicine could be used to treat illnesses.

  相似文献   

9.
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds.  相似文献   

10.
Thirty-eight actinomycetes were isolated from sediment collected from the Mariana Trench (10,898 m) using marine agar and media selective for actinomycetes, notably raffinose-histidine agar. The isolates were assigned to the class Actinobacteria using primers specific for members of this taxon. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Dermacoccus, Kocuria, Micromonospora, Streptomyces, Tsukamurella and Williamsia. All of the isolates were screened for genes encoding nonribosomal peptide and polyketide synthetases. Nonribosomal peptide synthetase sequences were detected in more than half of the isolates and polyketide synthases type I (PKS-I) were identified in five out of 38 strains. The Streptomyces isolates produced several unusual secondary metabolites, including a PKS-I associated product. In initial testing for piezotolerance, the Dermacoccus strain MT1.1 grew at elevated hydrostatic pressures.  相似文献   

11.
Summary One hundred and thirty endophytic fungi isolated from 12 Chinese traditional medicinal plants collected at Yuanmou county and Dawei Mountain, Yunnan province, southwest China, were tested for antitumour and antifungal activities by MTT assay on human gastric tumour cell line BGC-823 and the growth inhibition test against 7 phytopathogenic fungi. The results showed that fermentation broths from 9.2% of the isolates exhibited antitumour activity and 30% exhibited antifungal activity, moreover, some of them exhibited broad-spectrum antifungal activity. The active isolates were identified to 32 taxa. The results indicate that the endophytic fungi of Chinese traditional medicinal plants are promising sources of novel bioactive compounds.  相似文献   

12.
One hundred and fifty endophytic actinomycetes were isolated from three pharmaceutical plants, Annonaceae squamosal, Camptotheca acuminate and Taxus chinensis. Bioactivity test showed that 72.4% of the endophytic actinomycetes displayed inhibition against more than one indicator microorganism. In total, 9.3 and 10.7% showed the cytotoxicity and antioxidant activity, respectively. 3-Amino-5-hydroxybenzoic acid synthase (AHBA), ketosynthase (KS), cytochrome P450 hydroxylases (CYPs) and epoxidase (ES) encoding genes were found in 8.8, 23.8, 2.8 and 11.7% isolates, respectively, by genes screening. The identification based on traditional and molecular methods indicated that diverse genotypes of Streptomyces were distributed in the three pharmaceutical plants, and a few strains of Amycolatopsis were also found in the root of T. chinensis. These results indicated that endophytic actinomycetes associated with pharmaceutical plants could be a promising source of drug leads.  相似文献   

13.
杨瑞先  张拦  彭彪彪  蒙城功 《微生物学报》2017,57(10):1567-1582
【目的】研究药用植物芍药(Paeonia lactiflora Pall.)内生真菌的种群多样性,同时对其可能存在的聚酮合酶(Polyketide synthase,PKS)和非核糖体多肽合成酶(Non-ribosomal peptide synthetase,NRPS)基因多样性进行评估,预测芍药内生真菌产生活性次生代谢产物的潜力。【方法】采用组织分离法获得芍药根部内生真菌菌株,结合形态学特征和ITS序列分析,进行鉴定;利用兼并性引物对内生真菌中存在的聚酮合酶(PKS)基因和非核糖体多肽合成酶(NRPS)基因进行PCR扩增及序列测定分析,构建系统发育树,明确芍药内真菌PKS基因序列和NRPS基因序列的系统进化地位。【结果】从芍药组织块中共分离得到105株内生分离物,去重复后获得52株内生真菌,菌株ITS基因序列信息显示,52株芍药内生真菌隶属于7目、13科、15属,其中小球腔菌属(Leptosphaeria)、土赤壳属(Ilyonectria)和镰孢属(Fusarium)为优势种群;从52株内生真菌中筛选获得13株含PKS基因片段的菌株,8株含NRPS基因片段的菌株,部分菌株功能基因的氨基酸序列与Gen Bank中已知化合物的合成序列具有一定的同源性,预示芍药根部内生真菌具有合成丰富多样的次生代谢产物的潜力。【结论】药用植物芍药根部具有丰富的内生真菌资源,且具有产生活性次生代谢产物的潜力,值得进一步开发研究和应用。  相似文献   

14.
Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.  相似文献   

15.
Aims: The aim of this study was to screen antitumour and antimicrobial activities of endophytic actinomycetes isolated from pharmaceutical plants in rainforest in Yunnan province, China. Methods and Results: Antitumour activity was studied by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and antimicrobial activity was determined by agar well diffusion method. The high bioactive endophytic isolates were identified and further investigated for the presence of polyketide synthases (PKS‐I, PKS‐II) and nonribosomal peptide synthetases (NRPS) sequences by specific amplification. The molecular identification confirmed that the 41 isolates showed significant activities were members of the genus Streptomyces. Among them, 31·7% of endophytic streptomycete cultures were cytotoxic against A549 cells, 29·3% against HL‐60 cells, 85·4% against BEL‐7404 cells, 90·2% against P388D1 cells, 65·9% were active against Escherichia coli, 24·4% against Staphylococcus aureus, 31·7% against Staphylococcus epidermidis, 12·2% against Candida albicans and no strain displayed antagonistic activity against Klebsiella pneumoniae. High frequencies of positive PCR amplification were obtained for PKS‐I (34·1%), PKS‐II (63·4%) and NRPS (61·0%) biosynthetic systems. Conclusions: Many endophytic streptomycetes isolated from pharmaceutical plants in rainforest possess remarkable and diverse antitumour and antimicrobial bioactivities. Significance and Impact of the Study: These endophytic streptomycetes are precious resources obtained from rainforests, and they could be a promising source for bioactive agents.  相似文献   

16.
Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.The class Actinobacteria accounts for a high proportion of soil microbial biomass and contains the most economically significant prokaryotes, producing more than half of the bioactive compounds in a literature survey (46), including antibiotics (6), immunosuppressive agents (55), antitumor agents (18), and enzymes (64). Actinobacteria belonging to the genus Streptomyces, in particular, are excellent producers. The emergence of drug resistance in many bacterial pathogens and the current increase in the number of fungal infections has caused a resurgence of interest in finding new reserves of biologically active compounds (63). As the search for novel natural products continues, it becomes apparent that the rate of discovery of new compounds from soil streptomycetes has decreased, whereas the rate of reisolation of known compounds has increased (28). Recently, evidence has accumulated that rare actinomycete species, which are often very difficult to isolate and cultivate, might represent a unique source of novel biologically active compounds (4). On the other hand, new microbial habitats need to be examined in the search for novel bioactive compounds. One biologically important but relatively overlooked niche is the inner tissues of higher plants. Early studies have demonstrated that some actinobacteria can form intimate associations with plants and colonize their inner tissues. Frankia species and Streptomyces scabies can penetrate their hosts and establish either pathogenic or endophytic associations (5, 24). The actinomycetes that reside in the tissues of living plants and do not visibly harm the plants are known as endophytic actinobacteria (37). These actinobacteria are relatively unstudied and are potential sources of novel natural products for exploitation in medicine, agriculture, and industry (73).Endophytic actinobacteria have attracted attention in recent years, with increasing reports of isolates from a range of plant types, including crop plants (cereals, such as wheat and rice, as well as potatoes, carrots, tomatoes, and citrus) (2, 16, 62, 71, 74, 80) and medicinal plants (75, 88). The culturable endophytic actinobacteria from these plants were found to fall within a narrow species distribution: Streptomyces spp. were the predominant species, and Microbispora, Micromonospora, Nocardioides, Nocardia, and Streptosporangium were the common genera. Endophytic actinobacteria have been demonstrated to improve and promote the growth of host plants as well as to reduce disease symptoms caused by plant pathogens through various mechanisms, including the production of secondary metabolites, which are used in direct antagonism against pests and diseases (9, 10, 12), changes in host physiology (42), and the induction of systemic acquired resistance in plants (15). Another significant function found for these actinobacteria was antibiotic activity, suggesting that endophytic actinobacteria can be an interesting source for bioprospecting. New antibiotics from endophytic Streptomyces spp.—alnumycin, munumbicins A to D, and coronamycins—have been reported (7, 11). Recently, two novel antitumor anthraquinones, lupinacidins A and B, were isolated from a new endophytic Micromonospora sp. (43). Moreover, new species of endophytic actinobacteria have been increasingly reported (25, 35). Thus, endophytic actinobacteria are expected to be potential sources of new species and new bioactive agents.Of the myriad ecosystems on earth, those with the greatest general biodiversity seem also to have the greatest number and the greatest diversity of endophytes (73). Tropical and temperate rain forests are the most biologically diverse terrestrial ecosystems on earth and thus the greatest possible resource for the acquisition of novel microorganisms and their products (73). One area of enormous plant biodiversity is Xishuangbanna, located in the People''s Republic of China at the border with Myanmar. This area lies at the ecotone between the Asian tropics and subtropics and is dominated by tropical seasonal rain forests (87). Xishuangbanna contains more than 5,000 species of vascular plants, comprising 16% of China''s total plant diversity, and more than 3,000 are endemic species (53, 60), many of which have ethnobotanical histories. Until the present, little research was carried out to isolate endophytic actinobacteria and their secondary metabolites from Xishuangbanna (36, 86). In our long-term study of endophytic actinobacterial diversity and bioactive metabolites from tropical rain forest medicinal plants in Xishuangbanna, many bioactive endophytic Streptomyces spp. have been isolated (49). However, the work to date is insufficient to provide a general understanding of the diversity, distribution, and ecology of tropical rain forest endophytic actinobacteria and to facilitate further exploitation of the diverse functions of this novel microbial source.In the present study, the diversity of rare endophytic actinobacteria associated with medicinal plants from the tropical rain forest in Xishuangbanna was investigated by combining special culturing techniques. The selected isolates were also identified by 16S rRNA gene analysis. The overall aims of this study were (i) to analyze the actinobacterial community and reveal whether the rain forest investigated in Xishuangbanna represents a valuable source for abundant endophytic actinobacteria and new species, (ii) to evaluate the antimicrobial activities of these actinobacteria and the biosynthetic potential of related secondary metabolites, and (iii) to study the relationships between the taxa of these endophytic actinobacteria and the isolation methods applied.  相似文献   

17.
The bioactive compounds of medicinal plants are products of the plant itself or of endophytes living inside the plant. Endophytes isolated from eight different anticancer plants collected in Yunnan, China, were characterized by diverse 16S and 18S rRNA gene phylogenies. A functional gene-based molecular screening strategy was used to target nonribosomal peptide synthetase (NRPS) and type I polyketide synthase (PKS) genes in endophytes. Bioinformatic analysis of these biosynthetic pathways facilitated inference of the potential bioactivity of endophyte natural products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. All of the endophyte culture broth extracts demonstrated antiproliferative effects in at least one test assay, either cytotoxic, antibacterial or antifungal. From the perspective of natural product discovery, this study confirms the potential for endophytes from medicinal plants to produce anticancer, antibacterial and antifungal compounds. In addition, PKS and NRPS gene screening is a valuable method for screening isolates of biosynthetic potential.  相似文献   

18.
Endophytic fungi are broadly dispersed residing inside plant tissues and have been demonstrated as a treasure for bioactive natural products. Unexplored harsh and heavy metal contaminant habitat of Avicennia marina may have diverse and potential fungal association. Therefore, this work aimed to isolate the culturable fungal endophytes associated with leaves of A. marina and to evaluate their medical potentialities. Seventeen isolates of endophyte fungi were isolated from healthy leaves and their antimicrobial activities were evaluated. Results showed that isolates had activity against micro-organisms in addition to their antioxidant activity produced a variety of phenolic compounds, besides exhibited a lowest cytotoxicity against ATCC-CCL-81 cell line. Consequently, selected endophytic fungal isolates were identified genetically as Chaetomium sp., Chaetomium madrasense, Chaetomium sp., Chaetomium globosum, Aspergillus hiratsukae, Aspergillus ochraceus, Alternaria tenuissima and Curvularia lunata with gene bank accession numbers MT089951, MT089952, MT089953, MT089954, MT089955, MT089956, MT089957 and MT089958 respectively. The most potent fungus extract was analysed using Gas chromatography–mass spectrometry which verified the presence of numerous bioactive compounds. These findings confirmed that new endophytic fungal strains derived from A. marina thrive in harsh ecosystem produce bioactive metabolites which can be recommended as a novel source for drug discovery.  相似文献   

19.
蛇足石杉内生细菌多样性北大核心CSCD   总被引:4,自引:2,他引:2  
【目的】探索国家二级保护野生药用植物蛇足石杉内生细菌的物种和生理活性多样性,发现并收集药用植物内生菌资源。【方法】分别从四川和福建等不同生态环境采集蛇足石杉植株,运用纯培养手段,对经过表面消毒处理的蛇足石杉样品进行内生菌的分离、培养;根据菌株16S r RNA基因信息,计算从蛇足石杉不同区系分离获得的内生细菌间的Jaccard指数、多样性指数、优势度指数与均匀度指数等,分析内生菌物种多样性;应用6种筛选模型对分离得到的内生菌进行生理活性测定,初步评价蛇足石杉内生细菌的生理活性多样性和药用价值。【结果】从12份蛇足石杉植物样品中分离获得356株内生菌菌株,菌株16S r RNA基因序列信息显示,分离得到的蛇足石杉内生细菌隶属于放线菌门、厚壁菌门和变形菌门等3个门的26个科、41个属,来源于蛇足石杉地上和地下部位的菌株数目、多样性指数等无明显差异。从中发现了分属于拟无枝酸菌属(Amycolatopsis)、Angustibacter、节杆菌属(Arthrobacter)、短小杆菌属(Curtobacterium)、Frondihabitans、Glaciihabitans、Jatrophihabitans、Luteimicrobium、Massilia、Naumannella和Tardiphaga等11个属的11个潜在新物种,以及皮生球菌科(Dermacoccaceae)的1个新属。在抗菌活性筛选中,356株纯培养物抗粪肠球菌、抗肺炎克雷伯菌、抗耻垢分枝杆菌以及抗水稻白叶枯病菌的阳性率分别是9.0%、1.4%、2.2%、0.8%;抑制SS04生长的降血脂药物筛选模型上的阳性率是8.1%;抗HIV-1的初筛阳性率为4.5%。共计74株菌在一个或多个筛选模型中显示出活性,初筛总阳性率为20.8%。【结论】蛇足石杉内生细菌具有丰富的物种多样性和生理活性多样性,是进一步发掘新型天然产物的理想菌种资源。  相似文献   

20.
Endophytic actinomycetes were isolated from Combretum latifolium Blume (Combretaceae),Western Ghats of Southern India and identified by its characteristic culture morphology and molecular analysis of 16S rRNA gene sequences. In this survey of endophytic actinomycetes, a total of 117 isolates representing 9 different genera of endophytic actinomycetes were obtained using four different isolation media and several of them seemed to be novel taxa. Streptomyces genera (35%) was the most frequently isolated strains, followed by Nocordiopsis (17%) and Micromonospora (13%). ISP-4 medium recovered more isolates (47%) when compared to rest of the media used. Preliminary antibacterial activity of the isolates was carried out by confrontation test. Ethyl acetate fraction of selected isolates in disc diffusion assay exhibited broad spectrum antimicrobial activity against test human pathogens. All Streptomyces spp. strains displayed significant antimicrobial activity against test pathogens. Strain CLA-66 and CLA-68 which are Nocordipsis spp. inhibited both bacterial and fungal pathogens where as other isolates inhibited atleast three test human pathogens in disc diffusion assay. Antimicrobial screening of endophytic actinomycetes from this host may represent a unique potential niche for antimicrobial compounds of industrial and pharmaceutical applications. This work is the first comprehensive report on incidence of potential endophytic actinomycetes inhabiting C. latifolium Blume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号