首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
云南热带户用沼气池的原核生物群落结构研究   总被引:2,自引:0,他引:2  
【目的】揭示云南热带农村户用沼气池中的原核生物(细菌和古菌)的群落结构特征。【方法】采用16S r RNA基因克隆文库技术对云南(北)热带代表性气候区的户用沼气池中的原核生物(细菌和古菌)多样性进行研究。【结果】得到细菌330条有效序列,划分为108个OTUs,文库覆盖度为81.5%;古菌有效序列185条,划分为17个OTUs,文库覆盖度为97.8%。通过Gen Bank数据库进行相似性比对与系统发育分析,结果表明:大部分细菌为未知细菌(Unclassified bacteria,占24.19%),优势细菌类群归属拟杆菌门(Bacteroidetes,占23.58%)、绿弯菌门(Chloroflexi,占21.46%)、厚壁菌门(Firmicutes,占13.91%)和变形菌门(Proteobacteria,占8.74%);古菌主要的优势类群为乙酸盐营养型的甲烷八叠球菌目(Methanosarcinales)的鬃毛甲烷菌属(Methanosaeta,占76.75%);此外还检测到少量未培养的泉古菌门细菌(Crenarchaeota,占9.19%)。【结论】云南(北)热带代表性气候区的农村户用沼气池中的微生物种类十分丰富,不同微生物种类的丰度存在明显差异,并存在明显优势种群,且细菌比古菌具有更丰富的多样性。  相似文献   

2.
Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.  相似文献   

3.
The diversity of Archaea in anaerobic digesters was characterized by strand conformation polymorphism (SSCP) analysis and the sequencing of 16S rDNA genes. The 44 digesters sampled, located in eight different countries, treated effluents from agriculture, the food processing and petro-chemical industries, pulp and paper plant, breweries, slaughterhouses and municipal waste. All the existing processes were represented among the samples (fixed-film, fluidized bed, stirred-tank, UASB, sequential batch reactor, lagoon). Single strand conformation polymorphism analysis targeting the V3 region of 16S rDNA revealed between four to six distinct archaeal peaks per digester. The diversity of dominant Archaea in the 44 digesters was estimated as 23 different 16S rDNA sequences. Cloning of archaeal 16S rRNA genes from 11 distinct total genomic DNA, screening of clones by SSCP and the sequencing of 170 of them made it possible to characterize these SSCP peaks. All the sequences retrieved were members of the Euryarchaeaota subdomain. Furthermore, most of the sequences retrieved were very close to already known and cultivated strains or to environmental clones. The most frequent archaeal sequences were close to Methanosaeta concilii and to a 16S rDNA clone vadinDC06 located in the Methanobacterium clade (84% and 73% of digesters respectively). The other sequences were members of the Methanobacteriales and the Methanomicrobiales families. Only one sequence was far from any sequence of the database and it could be grouped with several sequences of environmental clones. Each digester harboured between two to nine archaeal sequences with only one of them corresponding to a putative acetate-utilizing species. Furthermore, the process in the digesters appeared to play a part in the distribution of archaeal diversity.  相似文献   

4.
A meta-analysis of the microbial diversity observed in anaerobic digesters   总被引:2,自引:0,他引:2  
In this study, the collective microbial diversity in anaerobic digesters was examined using a meta-analysis approach. All 16S rRNA gene sequences recovered from anaerobic digesters available in public databases were retrieved and subjected to phylogenetic and statistical analyses. As of May 2010, 16,519 bacterial and 2869 archaeal sequences were found in GenBank. The bacterial sequences were assigned to 5926 operational taxonomic units (OTUs, based on ?97% sequence identity) representing 28 known bacterial phyla, with Proteobacteria (1590 OTUs), Firmicutes (1352 OTUs), Bacteroidetes (705 OTUs), and Chloroflexi (693 OTUs) being predominant. Archaeal sequences were assigned to 296 OTUs, primarily Methanosaeta and the uncharacterized WSA2 group. Nearly 60% of all sequences could not be classified to any established genus. Rarefaction analysis indicates that approximately 60% of bacterial and 90% of archaeal diversity in anaerobic digesters has been sampled. This analysis of the global bacterial and archaeal diversity in AD systems can guide future studies to further examine the microbial diversity involved in AD and development of comprehensive analytical tools.  相似文献   

5.
We determined the effect of different mixing intensities on the performance, methanogenic population dynamics, and juxtaposition of syntrophic microbes in anaerobic digesters treating cow manure from a dairy farm. Computer automated radioactive particle tracking in conjunction with computational fluid dynamics was performed to quantify the shear levels locally. Four continuously stirred anaerobic digesters were operated at different mixing intensities of 1,500, 500, 250, and 50 revolutions per min (RPM) over a 260-day period at a temperature of 34 +/- 1 degrees C. Animal manure at a volatile solids (VS) concentration of 50 g/L was fed into the digesters daily at five different organic loading rates between 0.6 and 3.5 g VS/L day. The different mixing intensities had no effect on the biogas production rates and yields at steady-state conditions. A methane yield of 0.241 +/- 0.007 L CH(4)/g VS fed was obtained by pooling the data of all four digesters during steady-state periods. However, digester performance was affected negatively by mixing intensity during startup of the digesters, with lower biogas production rates and higher volatile fatty acids concentrations observed for the 1,500-RPM digester. Despite similar methane production yields and rates, the acetoclastic methanogenic populations were different for the high- and low-intensity mixed digesters with Methanosarcina spp. and Methanosaeta concilii as the predominant methanogens, respectively. For all four digesters, epifluorescence microscopy revealed decreasing microbial floc sizes beginning at week 4 and continuing through week 26 after which no microbial flocs remained. This decrease in size, and subsequent loss of microbial flocs did not, however, produce any long-term upsets in digester performance.  相似文献   

6.
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.  相似文献   

7.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

8.
沼气池污泥微生物总DNA提取方法的比较   总被引:1,自引:0,他引:1  
沼气发酵系统是一个复杂的生态系统,其污泥微生物超过99%是不可培养的。为了优化沼气池纤维素的转化效率、沼气的产率和开展污泥微生物多样性研究,本研究采用化学裂解法、溶菌酶裂解法和QIAampDNA Stool Mini Kit提取了沼气池污泥样品中微生物的总DNA,对三种方法的DNA得率、纯度、大片段提取效果以及是否含有PCR反应抑制剂进行了研究,最后对16S rRNA基因V3区的扩增产物进行了PCR变性梯度凝胶电泳(PCR-DGGE)分析。与化学裂解法和QIAamp DNA Stool Mini Kit法相比,溶菌酶裂解法得到的DNA量大、片段长、片段分布广、PCR扩增效率高;同时PCR-DGGE图谱显示,溶菌酶裂解法可更好地展示沼气池污泥中微生物的多样性。该结果为进一步提高沼气池中纤维素的转化效率和沼气生产优势菌种的质和量打下了一定的前期基础。  相似文献   

9.
Hydrogen is a central metabolite in the methanization process. In this study the partial pressure of hydrogen in the gas phase of laboratory manure digesters was monitored over extensive periods of time and found to vary between 50 and 100.10(-6) atm. By sparging the gas phase of the digester through an auxiliary reactor, hydrogenotrophic methanogens were allowed to develop at the expense of hydrogen and carbon dioxide present in the biogas, independently of the liquid or cell residence time in the main reactor. By scrubbing ca. 100 volumes of biogas per liter reactor per day through an auxiliary reactor, hydrogen concentration could be decreased maximally 25%. This resulted in an increase in the gas production rate of the main digester of ca. 10% and a concomitant improved removal of volatile fatty acids from the mixed liquor. The results obtained indicate that considerable stripping of hydrogen from the digester could be achieved at acceptable energy expenditure. However, the microbial removal of the hydrogen at these low concentrations is extremely slow and limits the applicability of this approach.  相似文献   

10.
Mixed plug‐flow loop reactor (MPFLR) has been widely adopted by the US dairy farms to convert cattle manure to biogas. However, the microbiome in MPFLR digesters remains unexplored. In this study, the microbiome in a MPFLR digester operated on a mega‐dairy farm was examined thrice over a 2 month period. Within 23 days of retention time, 55–70% of total manure solid was digested. Except for a few minor volatile fatty acids (VFAs), total VFA concentration and pH remained similar along the course of the digester and over time. Metagenomic analysis showed that although with some temporal variations, the bacterial community was rather stable spatially in the digester. The methanogenic community was also stable both spatially and temporally in the digester. Among methanogens, genus Methanosaeta dominated in the digester. Quantitative polymerase chain reaction (qPCR) analysis and metagenomic analysis yielded different relative abundance of individual genera of methanogens, especially for Methanobacterium, which was predominant based on qPCR analysis but undetectable by metagenomics. Collectively, the results showed that only small microbial and chemical gradients existed within the digester, and the digestion process occurred similarly throughout the MPFLR digester. The findings of this study may help improve the operation and design of this type of manure digesters.  相似文献   

11.
Thermophilic methane-producing digesters were examined by the analysis of lipids to determine the microbial biomass, community structure, and nutritional status of the microbes within the digesters. The digesters received a daily feedstock of cattle feed and Bermuda grass, with some digesters receiving additional supplements of propionate, butyrate, or nitrate. Microbial biomass, measured as total extractable lipid phosphate, was decreased in slurries from digesters receiving continuous addition of the fermentation intermediates propionate or butyrate as compared with slurries from control digesters receiving the feedstock alone. In slurries from digesters that received continuous addition of nitrate, the microbial biomass was higher than in the slurries from control digesters. The control digesters had ca. 2.5 × 1011 bacteria per g (dry weight) as determined from total extractable lipid phosphate. Shifts in microbial community structure were observed by analysis of ester-linked phospholipid fatty acids. Statistical analysis of the patterns of phospholipid fatty acids indicated that the digesters receiving different supplements could be distinguished from the control digester and from each other. Poly-β-hydroxybutyric acid, an indicator of metabolic stress, was detected in slurries from all the digesters. Slurries from the nitrate-amended digester had the highest concentration of poly-β-hydroxybutyric acid, whereas slurries from the propionate-amended digester had the lowest concentration. These chemical analyses offer a quantitative means to correlate shifts in microbial biomass, community structure, and nutritional status in complex fermentation systems to the production of a specific end product.  相似文献   

12.
The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.  相似文献   

13.
14.
This study compares the performance of anaerobic digestion of fruit and vegetable waste (FVW) in the thermophilic (55 °C) process with those under psychrophilic (20 °C) and mesophilic (35 °C) conditions in a tubular anaerobic digesters on a laboratory scale. The hydraulic retention time (HRT) ranged from 10 to 20 days, and raw fruit and vegetable waste was supplied in a semi-continuous mode at various concentrations of total solids (TS) (4, 6, 8 and 10% on dry weight). Biogas production from the experimental thermophilic digester was higher on average than from psychrophilic and mesophilic digesters by 144 and 41%, respectively. The net energy production in the thermophilic digester was 195.7 and 49.07 kJ per day higher than that for the psychrophilic and mesophilic digesters, respectively. The relation between the daily production of biogas and the temperature indicates that for the same produced quantity of biogas, the size of the thermophilic digester can be reduced with regard to that of the psychrophilic and the mesophilic digesters.  相似文献   

15.
Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found.  相似文献   

16.
Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process.  相似文献   

17.
The microbial mats responsible for biological desulfurization from biogas in a full-scale anaerobic digester were characterized in terms of their structure, as well as their chemical and microbial properties. Filament-shaped elemental sulfur 100–500 μm in length was shown to cover the mats, which cover the entire headspace of the digester. This is the first report on filamentous sulfur production in a non-marine environment. The results of the analysis of the mats suggest that the key players in the sulfide oxidation and sulfur production in the bio-desulfurization in the headspace of the digester were likely to be two sulfide-oxidizing bacteria (SOB) species related to Halothiobacillus neapolitanus and Sulfurimonas denitrificans, and that the microbial community, cell density, activity for sulfide oxidation varied according to the environmental conditions at the various locations of the mats. Since the water and nutrients necessary for the SOB were provided by the digested sludge droplets deposited on the mats, and our results show that a higher rate of sulfide oxidation occurred with more frequent digested sludge deposition, the habitat of the SOB needs to be made in the lower part of the headspace near the liquid level of the digested sludge to maintain optimal conditions.  相似文献   

18.
低温沼气发酵优良菌系筛选及优势菌群分析   总被引:2,自引:0,他引:2  
【目的】为获得低温沼气发酵高效菌系, 从张家口、承德和邯郸地区采集低温产气良好的沼气池中沼泥样品12份。【方法】以沼泥为接种源进行16 °C?5 °C阶段降温模拟沼气发酵试验, 对处理组HL2、ZG2、CW1及其相应的接种源HLA、ZGB、CWB进行DGGE分析。【结果】ZG2处理组模拟沼气发酵综合性能最优, 与其他处理组呈显著性差异; DGGE图谱显示, 被检测样品中古菌种属多样性丰富, 但图谱中代表优势种属条带的位置存在较大差异。通过16S rDNA克隆及测序分析, 样品中主要优势菌属为甲烷八叠球菌属、甲烷鬃毛菌属和甲烷粒菌属。【结论】DGGE图谱中代表甲烷八叠球菌属的条带是样品ZG2和ZGB中唯一重复出现的条带, 且未作为优势条带出现在其他样品中, 推测甲烷八叠球菌属与低温产沼气有密切相关性。  相似文献   

19.
Han  Rui  Liu  Li  Meng  Yan  Han  Hairong  Xiong  Rongbo  Li  Yi  Chen  Laisheng 《Biotechnology letters》2021,43(7):1337-1348

The present study aims to investigate microbial community structures household biogas digesters with different raw materials in Qinghai Plateau rural. High-throughput 16S rRNA gene sequencing analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant bacterial phyla (64.08%). Prevotella group 7 was the most abundant genus in digester YL9 and YL10 (69.72% and 26.96%, respectively) using vegetable waste raw materials. Trichococcus exhibited the highest abundance (14.55%) in YL1 digester using sheep and pig manure. Clostridium sensu stricto 1 (13.89%) and Synergistaceae_uncultured (15.52%) comprised the highest abundances in digester YL5 with mixed raw materials (i.e., dairy manure, sheep manure, and human feces). In addition, Proteiniphilum and Pseudomonas exhibited the highest abundances among bacterial genera in YL4 digester using pig manure. Methanomicrobiales was the most dominant archaeal communities, ranging from 13.35% to 81.34% in abundance. Methanocorpusculum exhibited dominant abundances in all digesters using various raw materials. Methanogenium was the most abundant archaeal genera in YL4 and YL6 digesters, which consume pig manure as primary raw material. In addition, Methanosarcina and Methanosaeta exhibited the highest abundances in digester YL1 (55.03%) and YL9 (51.40%), respectively. Moreover, fermentation temperatures and pH both contributed to the archaeal and bacterial community structures in all the investigated digesters. Specially, fermentation temperature showed positive correlation with the abundances of Synergistaceae_uncultured, Methanogenium, and Methanosaeta, and pH was positively correlated with the abundances of Prevotella group 7 and Methanosarcina abundances.

  相似文献   

20.
Methane production, electricity production, and wastewater transformations were quantified for a digestion system that combines biogas from a swine digester and dairy digester in Costa Rica. The low-cost, plug-flow digesters were not heated and were operated in the lower portion of the mesophilic range (25–27 °C).The dairy digester produced 27.5 m3/day of biogas with 62.6% methane and reduced organic matter (COD) by 86%. The swine digester produced 6.0 m3/day of biogas with 76.4% methane and reduced COD by 92%. Combining biogas from a swine and dairy digester, increased electricity production due to the higher biogas production rate of the dairy farm and the higher quality biogas obtained from the swine farm. The farm’s 2-h peak electricity demand (12.9 kW/day) was 81.8% met. The electricity was produced using manure equivalent to the quantity excreted by 5 dairy cows and 40 pigs remaining in corrals 100% of the time.The $21,000 capital cost of the digester project will be recovered in 10.1 years through electricity savings and reductions in wastewater fines. If the generator were more appropriately sized for the farm, the capital recovery time would have been 7.6 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号