首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of fluorescent Pseudomonas strain EKi, in production of biocontrol and plant growth promotory (PGP) metabolites under saline stress was evaluated. Strain EKi could tolerate NaCl up to 1,550 mM and showed biocontrol of Macrophomina phaseolina (76.19%) in the presence of up to 400 mM NaCl. Strain EKi was able to produce IAA, siderophore and pyocyanin with gradual reduction of up to 76.31, 45.46, and 48.99%, respectively, as NaCl concentration increased from 0 to 500 mM. Reduced growth rate resulted in delayed induction of IAA, siderophore and pyocyanin by the PGPR. Thin layer chromatography of chloroform extract from non-stressed and salt stressed EKi, and inhibition of M. phaseolina by purified pyocyanin clearly indicated its role in biocontrol. In vitro and in vivo results showed the growth promotion and charcoal rot disease suppression of chickpea by strain EKi under both non-stressed and saline stress. There was 76.75 and 65.25% reduction of disease incidence in non-saline and saline conditions, respectively, in vitro conditions. In presence of M. phaseolina strain EKi brought about 67.65 and 58.45% reduction of disease incidence in non-saline and saline soil, respectively.  相似文献   

2.
Bacterial isolates having antifungal and good plant growth-promoting attributes were isolated from chir-pine (Pinus roxburghii) rhizosphere. An isolate, Bacillus subtilis BN1 exhibited strong antagonistic activity against Macrophomina phaseolina, and other phytopathogens including Fusarium oxysporum and Rhizoctonia solani. It was characterized and selected for the present studies. BN1 resulted in vacuolation, hyphal squeezing, swelling, abnormal branching and lysis of mycelia. The cell-free culture filtrate of BN1 inhibited the growth of M. phaseolina. Pot trial study resulted in statistically significant increase in seedling biomass besides reduction in root rot symptoms in chir-pine seedlings. BN1 treatment resulted in 43.6% and 93.54% increases in root and shoot dry weights respectively, as compared to control. Also, 80–85% seed viability was recorded in treatments receiving BN1 either alone or in the presence of M. phaseolina, compared to 54.5% with M. phaseolina. Bioinoculant formulation study suggested that maximum viability of bacteria was in a sawdust-based carrier. B. subtilis BN1 produced lytic enzymes, chitinase and β-1,3-glucanase, which are known to cause hyphal degradation and digestion of the cell wall component of M. phaseolina. In the presence of M. phaseolina, population of B1 was 1.5 × 10c.f.u. g−1 root after one month, which increased to 4.5 × 10c.f.u. g−1 root in three months. Positive root colonization capability of B. subtilis BN1 proved it as a potent biocontrol agent.  相似文献   

3.
Single-cell Raman microspectroscopy has the potential to report on the whole-cell chemical composition of bacteria, reflecting metabolic status as well as growth history. This potential has been demonstrated through the discriminant functional analysis of Raman spectral profiles (RSP) obtained from the soil and plant-associated bacterium Pseudomonas fluorescens SBW25, grown in vitro using defined media, and in planta using 3-month-old sugar beets (Beta vulgaris var. Roberta). SBW25 in vitro RSP data showed significant variation between those cells grown on different amino acids, sugars, TCA cycle intermediates, rich King's B, and culture media derived from the sugar beet phytosphere. Raman analysis was also able to follow the transition of SBW25 starved of carbon over a period of days, and SBW25 in planta RSP data also showed variation with significant differences between bacteria recovered from soil and the rhizosphere. SBW25 whole-cell chemical composition, and therefore growth and metabolic history, could be interpreted by coanalyzing in vitro and in planta RSP data. SBW25 recovered from the phytosphere was found to be more similar to SBW25 grown in vitro on Fru or Asp, rather than on Glc or Arg, and quite dissimilar to that resulting from carbon starvation. This suggests that SBW25 growth in the phytosphere is generally neither carbon-catabolite-repressed nor carbon-limited. These findings demonstrate that the analysis of single-cell RSP can differentiate between isogenic populations of bacteria with different metabolic histories or after recovery from different parts of their natural environment. In addition, Raman analysis is also capable of providing biologically relevant biochemical inferences, which might then be tested to uncover the mechanistic basis (biochemical–metabolic–genetic) differentiating bacteria growing in complex environments and exposed to different conditions.  相似文献   

4.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

5.
The effects of starvation on cell death in the midgut of Periplaneta americana were studied histochemically and ultrastructurally. TUNEL assays showed that cell death began to increase in the columnar cells and nidi, the nests of stem cells and newborn cells from 2 weeks of starvation. A significant increase in cell death occurred in the nidi after 4 weeks of starvation. Cockroaches starved for 4 weeks showed active-caspase-3-like immuno-reactivity both in the columnar cells and nidi, whereas control cockroaches that were fed for 4 weeks showed this reactivity only in the apical cytoplasm of columnar cells. Electron microscopy revealed no chromatin condensation in the nucleus of columnar cells of cockroaches, whether fed or starved for 4 weeks. Starved cockroaches exhibited many small vacuoles in the cytoplasm of some columnar cells and “floating” organelles including nuclei in the lumen. A 4-week starvation induced the appearance of cytoplasmic fragmentation and secondary lysosomes in the nidi. Each fragment contained nuclear derivatives with condensed chromatin, i.e. apoptotic bodies. Mitotic cells were found in some, but not all nidi, even within the same starved sample. Fragmentation was not observed in the nidi of control cockroaches. Thus, starvation increases cell death not only in the columnar cells, but also in the nidi. The cell death in the nidi is presumably apoptosis executed by caspase 3.  相似文献   

6.
In this study, Lactobacillus fermentum (L. fermentum) F1 reduced cholesterol 48.87%. The strain was screened from cattle feces using an API 50 CHL system and the 16S rRNA sequence contrasting method. L. fermentum F1 showed acid and bile tolerance, and antimicrobial activity against pathogenic Escherichia coli and Staphylococcus aureus. L. fermentum F1 deconjugated 0.186 mM of free cholalic acid after it was incubated at 37°C in 0.20% sodium taurocholate (TCA) broth for 24 h. Heat-killed and resting cells of L. fermentum F1 showed small amounts of cholesterol removal (6.85 and 25.19 mg/g, respectively, of dry weight) compared with growing cells (33.21 mg/g of dry weight). The supernatant fluid of the broth contained 50.85% of the total cholesterol, while the washing buffer and cell extracts had 13.53 and 35.39%, respectively. These findings suggest that L. fermentum F1 may remove cholesterol by co-precipitating with deconjugated bile salt, assimilating with cells and by incorporation into cellular membranes. Cholesterol assimilated by cells held 72.0% of the reduced cholesterol, while 21.65% of the reduced cholesterol was coprecipitated with deconjugated bile salt and 5.89% was adsorbed into the surface of the cells.  相似文献   

7.
Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488 (B-30488), Piriformospora indica DSM 11827 (DSM 11827) and their consortia (B-30488:DSM 11827:: 1:1) with native rhizobial population in the rhizosphere of Cicer arietinum L. (Chick pea) was tested for enhancing nodulations and plant growth promotion. Number of nodules and dry weight per plant significantly enhanced (P = 0.05), which is further evident by N, P, and K uptake by plants and were found to be maximum in B-30488 treated followed by B-30488: DSM 11827 and DSM 11827, as compared with uninoculated control, in 60 days grown chickpea plants. Microbial community structure in the rhizosphere of the four treatments was assessed, using Biolog Eco and MT plates. Principal component analysis (PCA) of carbon source utilization pattern on Biolog Eco plates did not show any clustering among the four samples indicating that in case of individually DSM 11827 and B-30488 treated chickpea rhizosphere there was significant change in microbial community structure, compared with lesser changes in un-inoculated and B-30488 and DSM 11827 consortium treated chickpea rhizosphere microflora. Additional carbon sources tested using Biolog MT plates, higher activity of lignin, chitin, and cellulose utilizing microbial communities in the rhizosphere being stimulated by root exudates treated with B-30488 alone or in consortia with DSM 11827, and, in turn, should encourage beneficial symbiotic or mutualistic microorganisms that can act as plant growth promoting and biocontrol agents.  相似文献   

8.
One hundred one isolates of Macrophomina phaseolina from various hosts and eco-geographical locations were employed for elucidating relationships among genetic diversity and virulence. Highly pathogenic, moderately pathogenic, and hypovirulent cluster bean specific isolates were identified. In order to correlate respective phenotypes of plant pathogenic fungus multiple and complex patterns of dsRNA elements were analyzed. Double-stranded ribonucleic acids (dsRNA) are ubiquitous in all major groups and most of them have vast potential as biological control agents for fungi. Rate of virulence and its further association could ascertain by host plant and their fungal genotypes. Variability of the fungal genotypes decides the link between the complexity of dsRNA with different variants and the change in virulence pattern. Double-stranded RNA was identified in approximately 21.7% of M. phaseolina isolates from charcoal rot infected cluster bean varieties. After recurrent laboratory transfer on culture media, the preponderance of the isolates harboring dsRNAs developed degenerate culture phenotypes and showed reduced virulence (hypovirulence) to cluster bean. Macrophomina has successfully showed diversified and reproducible banding profile in dsRNA containing/free isolates. This is the first report of hypovirulence and detection of dsRNA in Macrophomina phaseolina isolates of cluster bean origin.  相似文献   

9.
A novel nicotine-degrading Pseudomonas sp. strain, HZN6, was isolated from a pesticide-wastewater treatment facility in Hangzhou. The strain could grow on nicotine as its sole source of carbon, nitrogen, and energy. The strain’s main intermediate metabolites were determined to be pseudooxynicotine, 3-succinoyl-pyridine (SP), and 6-hydroxy-3-succinoyl-pyridine (HSP). A Tn5 transposon mutant was generated in which the degradation pathway was blocked at the SP. A 4,583-bp DNA fragment flanking the transposon insertion site was obtained through self-formed adaptor PCR and analyzed. The mutant gene orfC displays 89% deduced amino acid sequence identity with the sirA-like gene (sirA2, a sulfurtransferase homologue gene) of Pseudomonas stutzeri A1501. The orfC-disrupted strain lost the ability to degrade SP, and the complementation strains with the orfC from the Pseudomonas sp. HZN6 and the sirA2 (PP_1233) from Pseudomonas putida KT2440 recovered the degradation ability. Though the orfC-disrupted strain also lost the xanthine dehydrogenase activity, the effects of tungsten on the degradation of SP and hypoxanthine revealed that the hydroxylation of SP to HSP was not a xanthine dehydrogenase type. These results demonstrated that the orfC gene was essential for the SP metabolism involved in the nicotine metabolic pathway in the Pseudomonas sp. HZN6 strain. This study might advance the understanding of the nicotine metabolic mechanism in Pseudomonas.  相似文献   

10.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

11.
Minaxi  Jyoti Saxena 《BioControl》2010,55(6):799-810
Pseudomonas fluorescens BAM-4, Burkholderia cepacia BAM-6 and B. cepacia BAM-12 isolated from the rhizosphere of moong bean (Vigna radiata L.) showed significant growth-inhibitory activity against a range of phytopathogenic fungi. Light and scanning electron microscopic (SEM) studies showed morphological abnormalities such as fragmentation, swelling, perforation and lysis of hyphae of pathogens by Pseudomonas and Burkholderia. Two of the strains (BAM-4 and BAM-6) produced siderophore in CAS agar plates, whereas all three strains produced chitinase. Bacterization of seeds of moong bean with pseudomonads has been reported as a potential method for enhancing plant growth and yield, and for providing protection against Macrophomina phaseolina. Seed bacterization with these plant growth-promoting rhizobacteria (PGPR) showed a significant increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight, leaf area and rhizosphere colonization. Yield parameters such as pods, number of seeds, and grain yield per plant also enhanced significantly in comparison to control. The disease suppression and plant growth enhancement along with the positive rhizosphere colonization by these strains indicate their possible use as PGPR/biocontrol agents against charcoal rot.  相似文献   

12.
Minaxi  Jyoti Saxena 《Mycopathologia》2010,170(3):181-193
Molecular characterization of rhizobacterial isolate RM-3, based on sequencing of a partial 1,313-bp fragment of 16S rDNA amplicon, validated the strain as Pseudomonas aeruginosa. The strain showed significant growth inhibition of different phytopathogenic fungi in dual plate and liquid culture assays. Maximum growth inhibition was found in case of Macrophomina phaseolina in plate assay (68%), whereas it was 93% in Dreschlera graminae in dual liquid assay. Microscopic studies (light and scanning electron) showed morphological abnormalities such as perforation, fragmentation, swelling, shriveling and lysis of hyphae of pathogenic fungi. The strain also exhibited production of siderophore and hydrogen cyanide (HCN) on chrome azurol S and King’s B media, respectively. Besides, this strain also produced extracellular chitinase enzyme and an important antibiotic, phenazine. Seed bacterization with RM-3 showed a significant (P < 0.05) increase in seed germination, shoot length, shoot fresh and dry weight, root length, root fresh and dry weight and leaf area. It was also able to colonize the rhizosphere of plants and reduced percent disease incidence in M. phaseolina-infested soil by 83%. Yield parameters such as pods, number of seeds and grain yield per plant also enhanced significantly (P < 0.05) in comparison to control. Thus, the secondary metabolites producing Pseudomonas aeruginosa strain RM-3 exhibited innate potential of plant growth promotion and biocontrol potential in vitro and in vivo.  相似文献   

13.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

14.
A protocol for the production of transgenic plants was developed for Lotus tenuis via Agrobacterium-mediated transformation of leaf segments. The explants were co-cultivated (for 3 days) with an A. tumefaciens strain harbouring either the binary vector pBi RD29A:oat arginine decarboxylase (ADC) or pBi RD29A:glucuronidase (GUS), which carries the neomycin phosphotransferase II (nptII) gene in the T-DNA region. Following co-cultivation, the explants were cultured in Murashige and Skoog medium supplemented with naphthalenacetic acid (NAA) and benzyladenine (BA) and containing kanamycin (30 μg ml−1) and cefotaxime (400 μg ml−1) for 45 days. The explants were subcultured several times (at 2-week intervals) to maintain the selection pressure during the entire period. About 40% of the explants inoculated with the pBiRD29:ADC strain produced eight to ten adventitious shoots per responsive explant through a direct system of regeneration, whereas 69% of the explants inoculated with the pBi RD29A:GUS strain produced 13–15 adventitious shoots per responsive explant. The selected transgenic lines were identified by PCR and Southern blot analysis. Three ADC transgenic lines were obtained from 30 infected explants, whereas 29 GUS transgenic lines were obtained from 160 explants, corresponding to a transformation efficiency of 10 and 18.1%, respectively. More than 90% of the in vitro plantlets were successfully transferred to the soil. The increase in the activity of arginine decarboxylase from stressed ADC- Lt19 lines was accompanied by a significant rise in the putrescine level. The GUS transgenic line driven by the RD29A promoter showed strong signals of osmotic stress in the leaves and stem tissues. All of the transgenic plants obtained exhibited the same phenotype as the untransformed controls under non-stress conditions, and the stability of the gene introduced into the cloned materials was established.  相似文献   

15.
Pseudomonas aeruginosa synthesizes large quantities of exopolysaccharide (EPS), making it an excellent model organism for the study of EPS-mediated adhesion. The purpose of this investigation was to evaluate the influence of limited nutrients availability in the culture medium on the composition of EPS produced by P. aeruginosa. The relationship between the EPS production and the adhesion process of the Paeruginosa cells to stainless steel surface (type 316 L) under starvation conditions were also examined. In all experimental variants Paeruginosa produced more EPS with an increase of incubation period upon starvation conditions. Under limited nutrients condition, glucose dominated in the EPS materials. After 6 days of the process, only glucosyl units were detected in the extracellular matrix produced by nutrient-deprived Paeruginosa cells. These extracellular molecules promoted more advanced stages of Paeruginosa biofilm formation on the surface of stainless steel.  相似文献   

16.
Culturable chitinolytic bacterial diversity was studied in chitin-rich soils collected from two industries involved in chitin production. A total of 27 chitinolytic isolates were isolated among which only 10 showed zone of clearance ≥4 mm on colloidal chitin agar plate. Using morphological, biochemical and 16S rDNA analysis, isolates were identified as Bacillus, Paenibacillus, Stenotrophomonas and Pseudomonas. Molecular phylogenetic analysis revealed that Gammaproteobacteria and Bacilli were found to be the predominant classes in these chitin-enriched soils. Chitinolytic bacterial population densities were significantly high and showed a rather simple community composition dominated by genus Bacillus and Stenotrophomonas (74%). This is the first report on assessing the chitinolytic bacterial diversity of soils from industries involved in chitin production.  相似文献   

17.
18.
Germplasm conservation of Podophyllum peltatum L. was attempted by using synthetic seed technology and media supplemented with osmotic agents. Excised buds from in vitro cultures were encapsulated in calcium alginate beads and cultured on different substrates then stored at 5, 10, and 25°C for up to 8 mo. Survival and vigor in re-growth were the parameters used to evaluate the germplasm storage conditions. Vigor in re-growth was measured by number of buds induced after storage, which was achieved on a substrate containing water solidified with 1% w/v agar under 10°C. In vitro storage of shoot cultures was also evaluated by supplementing osmotic agents, mannitol, or sorbitol to the media. Such treatment had a negative impact on post-storage re-growth (at 25°C), even though the inclusion of 2% w/v sorbitol and mannitol each to the media increased plantlet survival during 10°C storage treatment. A deleterious effect was noticed among cultures in re-growth when higher concentrations of these supplements were added to the media. Genetic stability was assessed following 8 mo of storage using a PCR-based multilocus DNA fingerprinting technique, amplified fragment-length polymorphism. No differences in the DNA fragment patterns were observed using eight primer combinations in stored clones. However, a polymorphic band was noticed in the accession that served as explant source, suggesting that the mutation has occurred prior to this study perhaps during the 9 years of in vitro cultivation.  相似文献   

19.
Two protocols were developed for the efficient regeneration of Sinningia speciosa from leaf explants via two developmental pathways. The first method involved formation of callus and buds, followed by subsequent root growth, in Murashige and Skoog medium (MS) containing 2.0 mg l−1 6-benzylaminopurine (BA) and 0.2 mg l−1 α-naphthalene acetic acid (NAA), with a regeneration efficiency of 99.0%. The second method involved producing callus and roots, followed by subsequent formation of buds, in MS medium supplemented with 1.0–5.0 mg l−1 NAA, and resulted in a regeneration efficiency of 90.4%. Our experiments indicate that the root-first pathway resulted in a lower plant regeneration efficiency. Through five continual generations using the buds-first method, a total of 215 regenerated plants were obtained in the last generation, and eight exhibited a phenotype we named tricussate whorled phyllotaxis (twp). Six of the regenerated twp variant plants maintained their tricussate whorled phyllotaxis phenotype, showing no other abnormalities, while one reverted to a wild type before flowering and another formed two rounds of sepals. Physiological analysis revealed that the twp plants responded differently than wild type to exogenous NAA and 2,3,5-triiodobenzoic acid (TIBA), while high-performance liquid chromatography (HPLC) analysis showed that the levels of endogenous indole-3-acetic acid (IAA) and gibberellin (GA) were lower in twp than wild-type plants. These results suggest that the formation of the twp mutant may be related to phytohormones and that the twp variant could be an important material for investigating the molecular mechanism of plant phyllotaxis patterning.  相似文献   

20.
Dialelic crosses and backcrosses of pyrethroid resistant (RR) and susceptible (SS) Rhipicephalus (Boophilus) microplus tick strains were carried out and the substitution (Phe-Ile) within the sodium channel gene was monitored in order to analyze the effects of the genotype on the pyrethroid resistance phenotype as measured by the larval packet test (LPT). Parental strains: susceptible (SS) and resistant (RR); dialelic crosses: RS (♂RR × ♀SS), and SR (♂SS × ♀RR); and backcrosses: RS × SS, RS × RR, SR × SS and SR × RR were infested on 280 kg calves. Resistance type (monogenic or polygenic) and effective dominance were determined based on the discriminant concentration (DC) for cipermethrine (0.5%), deltamethrine (0.09%) and flumethrine (0.01%). Allele specific PCR (AS-PCR) was used for genotyping, looking at a sodium channel mutation (Phe-Ile substitution). The mortality rates and allele frequency of susceptible and pyrethroid resistant reference strains were 0% mortality and 90% RR alleles for resistant strain, and 100% mortality and 0% RR alleles as measured by the larval packet test (LPT) and allele specific PCR (AS-PCR) respectively. Backcrossed strain SR × RR showed an effective dominance (DML) of 0.605 for cypermethrin, 0.639 for deltamethrin and 0.498 for flumethrin, while survival of backcrosses RS × SS, RS × RR and SR × SS showed a significant tendency to recesivity. Backcrossed strain SR × RR (69.4%) also showed a higher RR genotype frequency with regards to RS × SS (25.5%), RS × RR (36.7%) and SR × SS (32.0%), however, susceptible allele was inherited in general as an incomplete dominant trait. Monogenic inheritance hypothesis was tested and the results showed monogenic inheritance for cypermethrin and flumethrin (P < 0.05) but not for deltamethrin (P > 0.05). However, significant correlation was found between RR genotype and the survival rate for all three pyrethroids used (P < 0.05), suggesting that a single substitution on the sodium channel gene can be responsible for resistance to pyrethroids as a class, due to the high frequency for RR genotypes. Combination with different mutations or metabolic resistance mechanisms cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号