首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to examine whether benzyl alcohol affects N-methyl-D-aspartate (NMDA) receptor in cortical cells. Benzyl alcohol (0.5–2 mM) inhibited NMDA-induced cytotoxicity. The protective effect of benzyl alcohol on NMDA-induced toxicity disappeared by washing cells with buffer to remove benzyl alcohol. Benzyl alcohol reduced NMDA receptor-mediated calcium accumulation, indicating that benzyl alcohol inhibits NMDA receptor activity.  相似文献   

2.
Benzyl alcohol is commonly used as an antibacterial agent in a variety of pharmaceutical formulations. Several fatalities in neonates have been linked to benzyl alcohol poisoning. Most methods for measuring benzyl alcohol concentrations in serum utilize direct extraction followed by high-performance liquid chromatography. We describe here a novel derivatization of benzyl alcohol using perfluorooctanoyl chloride after extraction from human serum for analysis by gas chromatography–mass spectrometry (GC–MS). The derivative was eluted at a significantly higher temperature respective to underivatized molecule and the method was free from interferences from more volatile components in serum and hemolyzed specimens. Another advantage of this derivatization technique is the conversion of low-molecular-mass benzyl alcohol (Mr 108) to a high-molecular-mass derivative (Mr 504). The positive identification of benzyl alcohol can be achieved by observing a distinct molecular ion at m/z 504 as well as the base peak at m/z 91. Quantitation of benzyl alcohol in human serum can easily be achieved by using 3,4-dimethylphenol as an internal standard. The within run and between run precisions (using serum standard of benzyl alcohol: 25 mg/l) were 2.7% (mean=24.1, S.D.=0.66 mg/l, n=8) and 4.2% (mean=24.3, S.D.=1.03 mg/l, n=8), respectively. The assay was linear for the serum benzyl alcohol concentrations of 2 mg/l to 200 mg/l and the detection limit was 0.1 mg/l. We observed no carry-over (memory effect) problem in our assay as when 2 μl ethyl acetate was injected into the GC–MS system after analyzing serum specimens containing 200 mg/l of benzyl alcohol, we observed no peak for either benzyl alcohol or the internal standard in the total ion chromatogram.  相似文献   

3.
The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid–liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid–liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.  相似文献   

4.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

5.
Due to its excellent capability to ferment five-carbon sugars, Escherichia coli has been considered one of the platform organisms to be engineered for production of cellulosic ethanol. Nevertheless, genetically engineered ethanologenic E. coli lacks the essential trait of alcohol tolerance. Development of ethanol tolerance is required for cost-effective ethanol fermentation. In this study, we improved alcohol tolerance of a nontransgenic E. coli KC01 (ldhA pflB ackA frdBC pdhR::pflBp6-aceEF-lpd) through adaptive evolution. During ~350 generations of adaptive evolution, a gradually increased concentration of ethanol was used as a selection pressure to enrich ethanol-tolerant mutants. The evolved mutant, E. coli SZ470, was able to grow anaerobically at 40 g l−1 ethanol, a twofold improvement over parent KC01. When compared with KC01 for small-scale (500 ml) xylose (50 g l−1) fermentation, SZ470 achieved 67% higher cell mass, 48% faster volumetric ethanol productivity, and 50% shorter time to complete fermentation with ethanol titer of 23.5 g l−1 and yield of 94%. These results demonstrate that an industry-oriented nontransgenic E. coli strain could be developed through incremental improvements of desired traits by a combination of molecular biology and traditional microbiology techniques.  相似文献   

6.
The selectivity of Rhodococcus sp. strain JVH1 among selected sulfidic and thiophenic compounds was investigated in both single-liquid-phase (aqueous) cultures and in two-liquid-phase cultures, where the sulfur compounds were dissolved in 2,2,4,4,6,8,8-heptamethylnonane as the immiscible organic carrier phase. In the single-liquid-phase cultures, Rhodococcus sp. strain JVH1 showed a preference for benzyl sulfide over both 1,4-dithiane and benzothiophene. An increased lag was observed in the degradation of benzyl sulfone and benzothiophene sulfone when both compounds were present. These results were consistent with a competitive inhibition mechanism, affecting both sulfur oxidation and carbon–sulfur bond cleavage. In the two-liquid-phase cultures, the effect of partitioning between the two liquid phases dominated the desulfurization activity of the culture. This partitioning resulted in an apparent absence of selectivity, as well as decreases in lag time, extent of degradation, and time to completion of degradation. Desulfurization activity also depended on the growth phase of the cultures. Mass transfer rate limitations were not observed at the low degradation rates of 0.02 mmol day-1 l−1. Owing to the importance of partitioning, Rhodococcus sp. strain JVH1 is predicted to show nonselective activity towards the sulfur species in a whole crude oil.  相似文献   

7.
Vitamin B12 was produced by probiotic Lactobacillus plantarum in submerged fermentation (96 h) with successive anaerobic and aerobic phases of 48 h each to give 13 ng vitamin B12/g dry biomass. Sodium cyanide-mediated cell lysis, followed by benzyl alcohol/chloroform/water extraction, improved the release of intracellular vitamin B12 for analysis. The presence of the K+ adduct of cyanocobalamin (m/z of 1394) was established using electron spray ionization–mass spectra; growth of a mutant of Escherichia coli in the presence of cyanocobalamin ascertained its bioavailability.  相似文献   

8.
Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD+ dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD+, while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K m value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K m and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.  相似文献   

9.
The FPS1 gene coding for the Fps1p aquaglyceroporin protein of an industrial strain of Saccharomyces cerevisiae was disrupted by inserting CUP1 gene. Wild-type strain, CE25, could only grow on YPD medium containing less than 0.45% (v/v) acetic acid, while recombinant strain T12 with FPS1 disruption could grow on YPD medium with 0.6% (v/v) acetic acid. Under 0.4% (v/v) acetic acid stress (pH 4.26), ethanol production and cell growth rates of T12 were 1.7 ± 0.1 and 0.061 ± 0.003 g/l h, while those of CE25 were 1.2 ± 0.1 and 0.048 ± 0.003 g/l h, respectively. FPS1 gene disruption in an industrial ethanologenic yeast thus increases cell growth and ethanol yield under acetic acid stress, which suggests the potential utility of FPS1 gene disruption for bioethanol production from renewable resources such as lignocelluloses.  相似文献   

10.
A strain JX23 was isolated from soil and identified as a species of Mucor according to the morphological characteristics and the nuclear ribosomal internal transcribed spacer sequence and designated as Mucor sp. JX23. Biotransformations of cinnamaldehyde (CMD), cinnamic acid (CMA) and acetophenone (ACP) catalyzed by JX23 were investigated. After JX23 was cultured for 48 h, the substrates CMD, CMA and ACP were added to the growth medium respectively and the products were analyzed by GC–MS and HPLC. Mucor sp. JX23 exhibited considerable redox capability and different catalytic specificity to CMD, CMA and ACP. CMD was selectively hydrogenated to cinnamyl alcohol. CMA was biotransformed to ACP with α, β-oxidation like degradation, and ACP could not be reduced further by JX23. When ACP was added as substrate, it could be asymmetrically reduced to (S)-(−)-1-phenylethyl alcohol (S-PEA) with high stereoselectivity (90%). Further, the biotransformations of different binary mixture substrates with JX23 were also studied. The biocatalytic selectivity depended on the relationship between the binary mixtures in above-mentioned reaction.  相似文献   

11.
[背景]乙酸肉桂酯是一种重要的香料化合物,在化妆品和食品工业上具有广泛的应用,传统的生产方法主要依靠植物提取和化学合成。[目的]通过筛选不同植物源的酰基转移酶,利用大肠杆菌从头合成乙酸肉桂酯。[方法]首先,通过在苯丙氨酸高产菌BPHE中表达异源基因苯丙氨酸解氨酶(Phenylalanine Ammonia-Lyase from Arabidopsis thaliana,AtPAL)、对羟基肉桂酰辅酶A连接酶(Hydroxycinnamate:CoA Ligase from Petroselinum crispum,Pc4CL)和肉桂酰辅酶 A 还原酶(Cinnamyl-CoA Reductase from Arabidopsis thaliana,AtCCR),并结合大肠杆菌自身的内源性醇脱氢酶(Alcohol Dehydrogenases,ADHs)或醛酮还原酶(Aldo-Keto Reductases,AKRs)的催化作用构建了从苯丙氨酸到肉桂醇的生物合成途径。然后,苯甲醇苯甲酰转移酶(Benzyl Alcohol O-Benzoyltransferase from Nicotiana tabacum,ANN09798;Benzyl Alcohol O-Benzoyltransferase from Clarkia breweri,ANN09796)或苯甲醇乙酰转移酶(Benzyl Alcohol Acetyltransferase from Clarkia breweri,BEAT)被引入到上述重组大肠杆菌中发酵培养生产乙酸肉桂酯。最后,在大肠杆菌中过表达乙酰辅酶A合成酶(Acetyl Coenzyme A Synthetase,ACS)来提高底物乙酰辅酶A的量。[结果]探讨了 3个植物源苯甲醇酰基转移酶生物合成乙酸肉桂酯的能力,并应用于合成乙酸肉桂酯的细胞工厂,最终使乙酸肉桂酯最高产量达到166.9±6.6mg/L。[结论]植物源苯甲醇酰基转移酶具有一定的底物宽泛性,能以肉桂醇为底物催化合成乙酸肉桂酯。首次利用植物源的苯甲醇酰基转移酶合成乙酸肉桂酯,为微生物细胞工厂以葡萄糖作为碳源生产乙酸肉桂酯提供参考。  相似文献   

12.
Engin Şahin 《Chirality》2018,30(2):189-194
Piperonyl ring is found in a number of naturally occurring compounds and possesses enormous biological activities. There are many studies in the literature with compounds containing a piperonyl ring, but there are very few studies on the synthesis of chiral piperonyl carbinol. The objective of this study was to determine the microbial reduction ability of bacterial strains and to reveal the effects of different physicochemical parameters on this reduction ability. A total of 15 bacterial isolates were screened for their ability to reduce 1‐(benzo[d][1,3]dioxol‐5‐yl) ethanone 1 to its corresponding alcohol. Among these isolates Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketone containing piperonyl ring to the corresponding alcohol. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale study was performed, and a total of 3.72 g of (R)‐1‐(1,3‐benzodioxol‐5‐yl) ethanol in high enantiomeric form (>99% enantiomeric excess) was produced in a mild, cheap, and environment‐friendly process. This study demonstrates that L paracasei BD101 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity.  相似文献   

13.
Hao Z  Cai Y  Liao X  Liang X  Liu J  Fang Z  Hu M  Zhang D 《Current microbiology》2011,62(6):1732-1738
A novel aerobic mesophilic bacterial strain SYBC-H1T capable of degrading chitin was isolated and classified in this study. The strain exhibited strong chitinolytic activity and was a Gram-negative, curved, rod-shaped, and motile bacterium. Growth of this strain was observed between 10 and 41°C and between pH 3.5 and 9.5. The DNA G + C content of strain SYBC-H1T was 53.25 mol%. The cellular fatty acids (>5%) were 12:0 iso 3-OH (5.87%), 16:0 (28.16%), and 18:1ω7c (20.48%). Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain SYBC-H1T belonged to the family Neisseriaceae, and was distantly related (95.0% similarity) to the genus Chitiniphilus. Its phenotype was unique and genetic and phylogenetic analysis experiments suggested that strain SYBC-H1T represented the type strain (CGMCC 3438T, ATCC BAA-2140T) of a novel genus, for which the name Chitinolyticbacter meiyuanensis SYBC-H1T gen. nov., sp. nov. was proposed. The highest enzymatic activity of chitinase (9.6 U/ml) was obtained at 72 h in 250 ml shake flasks. The 16S rRNA gene sequence of SYBC-H1T has been deposited in GenBank under the accession number GQ981314.  相似文献   

14.
Molecular methods were carried out to detect Penicillium griseofulvum, a dominant species related to heavy metal pollution, which was screened from marine contaminated sediments. Based on differences in internal transcribed spacer (ITS) sequences of Penicillium genus and specific isoamyl alcohol oxidase (IAO) sequences, species-specific primers AS1/RS4 and IAO1/IAO2 of Penicillium griseofulvum were designed and synthesized which were then employed in optimized PCR systems. The detection sensitivities were compared through ordinary PCR and nested-PCR using two pairs of primers, respectively. Both primer pairs could exclusively amplify destined DNA fragment from contaminated environmental samples in our researches. As for primers AS1/RS4, the detection sensitivity for spores (pure spore DNA) could be 10 fg/μl and 10 spores, respectively, and the detection sensitivity for the sediments was 102 spores/0.25 g sediments. While the detection sensitivity of IAO1/IAO2 primers was lower than that of AS1/RS4. Despite the difference in detection sensitivity, it is feasible that the species-specific primers could be used as probes for the detection of environmental pollution dominant species, Penicillium griseofulvum, since the frequency of occurrence and amount of this strain could preferably indicate the pollution degree.  相似文献   

15.
In Brazil, the use of cashew apple (Anacardium occidentale L.) to obtain new products by biotechnological process represents an important alternative to avoid wastage of a large quantity of this fruit, which reaches about 85% of the annual production of 1 million tons. This work focuses on the development of an alcoholic product obtained by the fermentation of cashew apple juice. The inoculation with two different strains of yeast Saccharomyces cerevisiae viz. SCP and SCT, were standardized to a concentration of 10cells ml−1. Each inoculum was added to 1,500 ml of cashew must. Fermentation was performed at 28 ± 3°C and aliquots were withdrawn every 24 h to monitor soluble sugar concentrations, pH, and dry matter contents. The volatile compounds in fermented products were analyzed using the gas chromatography/mass spectrometry (GC/MS) system. After 6 days, the fermentation process was completed, cells removed by filtration and centrifugation, and the products were stabilized under refrigeration for a period of 20 days. The stabilized products were stored in glass bottles and pasteurized at 60 ± 5°C/30 min. Both fermented products contained ethanol concentration above 6% (v v−1) while methanol was not detected and total acidity was below 90 mEq l−1, representing a pH of 3.8–3.9. The volatile compounds were characterized by the presence of aldehyde (butyl aldehyde diethyl acetal, 2,4-dimethyl-hepta-2,4-dienal, and 2-methyl-2-pentenal) and ester (ethyl α-methylbutyrate) representing fruity aroma. The strain SCT was found to be better and efficient and this produced 10% more alcohol over that of strain SCP.  相似文献   

16.
A Gram-positive, rod-shaped, motile and spore-forming bacterium, designated ZLD-8T, was isolated from a desert soil sample collected from Xinjiang Province in north-west China, and subjected to a polyphasic taxonomic analysis. This isolate grew optimally at 30°C and pH 7.0. It grew with 0–4% NaCl (optimum, 0–1%). Comparative 16S rRNA gene sequence analysis showed that strain ZLD-8T was closely related to members of the genus Bacillus, exhibiting the highest 16S rRNA gene sequence similarity to Bacillus kribbensis DSM 17871T (98.0%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.3%. The DNA G + C content of strain ZLD-8T was 40.1 mol%. The strain contained MK-7 as the predominant menaquinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5% of total fatty acids) were anteiso-C15:0 (39.56%), iso-C14:0 (25.69%), C16:1 ω7c alcohol (10.13%) and iso-C15:0 (5.27%). These chemotaxonomic results supported the affiliation of strain ZLD-8T to the genus Bacillus. However, low DNA–DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain ZLD-8T from recognized Bacillus species. On the basis of the polyphasic evidence presented, strain ZLD-8T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus deserti sp. nov. is proposed. The type strain is ZLD-8T (=CCTCC AB 207173T = KCTC 13246T).  相似文献   

17.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

18.
A basic requirement for the efficiency of reductive whole-cell biotransformations is the reducing capacity of the host. Here, the pentose phosphate pathway (PPP) was applied for NADPH regeneration with glucose as the electron-donating co-substrate using Escherichia coli as host. Reduction of the prochiral β-keto ester methyl acetoacetate to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) served as a model reaction, catalyzed by an R-specific alcohol dehydrogenase. The main focus was maximization of the reduced product per glucose yield of this pathway-coupled cofactor regeneration with resting cells. With a strain lacking the phosphoglucose isomerase, the yield of the reference strain was increased from 2.44 to 3.78 mol MHB/mol glucose. Even higher yields were obtained with strains lacking either phosphofructokinase I (4.79 mol MHB/mol glucose) or phosphofructokinase I and II (5.46 mol MHB/mol glucose). These results persuasively demonstrate the potential of NADPH generation by the PPP in whole-cell biotransformations.  相似文献   

19.
The plant microbiota can affect host fitness via the emission of microbial volatile organic compounds (mVOCs) that influence growth and development. However, evidence of these molecules and their effects in plants from arid ecosystems is limited. We screened the mVOCs produced by 40 core and representative members of the microbiome of agaves and cacti in their interaction with Arabidopsis thaliana and Nicotiana benthamiana. We used SPME‐GC‐MS to characterize the chemical diversity of mVOCs and tested the effects of selected compounds on growth and development of model and host plants. Our study revealed that approximately 90% of the bacterial strains promoted plant growth both in Athaliana and Nbenthamiana. Bacterial VOCs were mainly composed of esters, alcohols, and S‐containing compounds with 25% of them not previously characterized. Remarkably, ethyl isovalerate, isoamyl acetate, 3‐methyl‐1‐butanol, benzyl alcohol, 2‐phenylethyl alcohol, and 3‐(methylthio)‐1‐propanol, and some of their mixtures, displayed beneficial effects in Athaliana and also improved growth and development of Agave tequilana and Agave salmiana in just 60 days. Volatiles produced by bacteria isolated from agaves and cacti are promising molecules for the sustainable production of crops in arid and semi‐arid regions.  相似文献   

20.
Commercial lipase preparations and mycelium bound lipase from Aspergillus niger NCIM 1207 were used for esterification of acetic acid with isoamyl alcohol to obtain isoamyl acetate. The esterification reaction was carried out at 30°C in n-hexane with shaking at 120 rpm. Initial reaction rates, conversion efficiency and isoamyl acetate concentration obtained using Novozyme 435 were the highest. Mycelium bound lipase of A. niger NCIM 1207 produced maximal isoamyl acetate formation at an alcohol/acid ratio of 1.6. Acetic acid at higher concentrations than required for the critical alcohol/acid ratio lower than 1.3 and higher than 1.6 resulted in decreased yields of isoamyl acetate probably owing to lowering of micro-aqueous environmental pH around the enzyme leading to inhibition of enzyme activity. Mycelium bound A. niger lipase produced 80 g/l of isoamyl acetate within 96 h even though extremely less amount of enzyme activity was used for esterification. The presence of sodium sulphate during esterification reaction at higher substrate concentration resulted in increased conversion efficiency when we used mycelium bound enzyme preparations of A. niger NCIM 1207. This could be due to removal of excess water released during esterification reaction by sodium sulphate. High ester concentration (286.5 g/l) and conversion (73.5%) were obtained within 24 h using Novozyme 435 under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号