首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to achieve biological control for the post-harvest onion bacterial rot diseases with the aid of Egyptian isolates of actinomycetes. In this respect, 45 actinomycetes strains were isolated from Egyptian soils and screened for their antagonistic effect against onion bacterial rot pathogens; Erwinia carotovora subsp. carotovora and Burkholderia cepacia. The most two active strains were identified based on their cultural, morphological and molecular properties as Streptomyces lavendulae HHFA1 and Streptomyces coelicolor HHFA2, the latter was most potent and so was used in vivo (pots and field) for controlling onion bacterial rot. S. coelicolor HHFA2 application resulted in enhancement in the photosynthetic pigments and some foliar growth parameters of onion plants confirming its growth promoting effect. The results of the post-harvest estimation of the disease incidence (DI) of the onion bacterial rot throughout storage revealed that, the application of S. coelicolor HHFA2 reduced the DI pronouncedly comparing with the untreated control and confirm its successful role in the biological control of onion bacterial rot diseases.  相似文献   

2.
3.
Compost suppression of soil-borne diseases in horticultural crops has been attributed to the activities of antagonistic microorganisms. A great diversity of microorganisms, capable of suppressing pathogens naturally colonize compost. A large number of microbes appeared in microbiological analyses of grape marc compost. Most microorganisms were bacteria. Average percentages were 31% mesophilic and 28% thermophylic bacteria, 16% mesophilic actinomycetes and 20% thermophylic actinomycetes. Only a few mould and yeast morphologies were obtained, 4% and 1% respectively. Antagonist in vitro assays were performed with 432 microbial morphologies isolated from grape marc compost. The microbes isolated were extremely effective antagonists in in vitro assays against all the fungal pathogens tested. Seven microorganisms were selected for further bioassay with Rhizoctonia solani in radish, Fusarium oxysporum f. sp. radicis-cucumerinum in melon, and Phytophthora parasitica in tomato and two microorganisms with Pythium aphanidermatum in cucumber. Those experiments indicate that grape marc compost reduces the severity of Pythium damping-off in cucumber, but does not reduce the severity of Phytophthora root rot in tomato, Fusarium oxysporum f. sp. radicis-cucumerinum in melon and Rhizoctonia solani in radish. Better suppressive effects were not demonstrated by either compost or vermiculite amended with microbes selected from grape marc compost.  相似文献   

4.
5.
The role of compost microflora in the suppression of salmonella regrowth in composted sewage sludge was investigated. Microbial inhibition studies of salmonella growth were conducted on nutrient agar, in composts that had been subjected to different temperatures in compost piles, and in radiation sterilized composts inoculated with selected fractions of the compost microflora. Agar assays of inhibition indicated that bacteria and actinomycetes were not suppressive to salmonellae, but a few fungi were. However, compost inoculation assays showed consistently that fungi were not suppressive, but bacteria and actinomycetes were. In compost inoculation assays, microbial antagonists, when present, either killed salmonellae or reduced their growth rate. No suppression of salmonellae occurred in compost taken from 70°C compost-pile zones despite the presence and growth of many types of microbes. With greater numbers and kinds of microbes in 55°C compost, salmonella growth was suppressed 100–10,000-fold. Salmonellae died when inoculated into compost from unheated zones (25–40°C) of piles. Prior colonization of compost with only noncoliform gram-negative bacteria suppressed salmonellae growth 3,000-fold. Coliforms when inoculated prior to salmonellae accounted for 75% of salmonella die-off. Mesophilic curing to allow colonization of curing piles in their entirety by gram-negative bacteria, especially coliforms, should be an effective way to prevent repopulation by salmonellae.  相似文献   

6.
放线菌中亮氨酸应答调控蛋白的生物学功能及其调控机理   总被引:1,自引:0,他引:1  
放线菌是一类革兰氏阳性细菌,可产生氨基酸等初级代谢产物和抗生素等次级代谢产物,其广泛用于食品、医药、添加剂及化妆品行业。此外,还有少数放线菌,如分枝杆菌等,是可以引起人和动植物病害的病原菌。亮氨酸应答调控蛋白(Leucine-responsive regulatory protein,Lrp)是一类在氨基酸代谢及其相关代谢过程中的重要转录调控子,能够应答各种氨基酸,参与调控微生物细胞的多个生理过程,例如氨基酸代谢和转运、中心代谢、细菌的持久性和毒力等。本文总结了放线菌Lrp的生物学功能,并综述了放线菌中不同种属Lrp以及天蓝色链霉菌和红色糖多孢菌Lrp调控机理的研究进展。  相似文献   

7.
Filamentous actinomycetes are commercially widely used as producers of natural products (in particular antibiotics) and of industrial enzymes. However, the mycelial lifestyle of actinomycetes, resulting in highly viscous broths and unfavorable pellet formation, has been a major bottleneck in their commercialization. Here we describe the successful morphological engineering of industrially important streptomycetes through controlled expression of the morphogene ssgA. This led to improved growth of many industrial and reference streptomycetes, with fragmentation of the mycelial clumps resulting in significantly enhanced growth rates in batch fermentations of Streptomyces coelicolor and Streptomyces lividans. Product formation was also stimulated, with a twofold increase in yield of enzyme production by S. lividans. We anticipate that the use of the presented methodology will make actinomycetes significantly more attractive as industrial and sustainable production hosts.  相似文献   

8.
9.
The addition of extracellular ATP (exATP) to four Streptomyces strains had similar effects: low exATP levels stimulated antibiotic production and high levels reduced it. Compared with antibiotic production, the concentrations of intracellular ATP (inATP) in the tested strains were opposite, which suggests a role of inATP in regulating secondary metabolite production. Under inactivation of the polyphosphate kinase gene (ppk) in Streptomyces lividans, we observed the same results: when the inATP level in the mutant strain was lower than in the parent strain, more antibiotic was produced. Combining all the results, a strong inverse relationship between [inATP] and the secondary metabolite production is suggested by this study.  相似文献   

10.
11.
As part of a research program whose aim is to determine the diversity of streptomycetes in order to discover new bioactive secondary metabolites, rhizosphere soils of three indigenous plants were analyzed. A total of 55 actinomycetes were isolated using three different medium from the samples. The rhizospheric soil of the plant Aethionema dumanii gave the highest number of actinomycetes, i.e., 42% versus 27% and 31% for the soils from Salvia aytachii and Achillea ketenoglui, respectively. The AIA is the most favorable medium for the isolation of the actinomycetes from different rhizospheric soils. 16S rDNA sequence analysis revealed that while some isolates belong to different cluster groups such as Streptomyces lydicus, S. rochei, S. microflavus, S. griseoflavus, S. albidoflavus and S. violaceusniger, the majority of the sequences did not considerable clustered with the member of different Streptomyces groups. The in vitro antimicrobial activities of the crude organic and aqueous extracts of isolates were screened using a disc diffusion assay against a panel of bacteria and C. albicans. A total of 22 isolates showed antimicrobial activity. The antibacterial action of the extracts is more pronounced on Gram-positive than on Gram-negative bacteria in most cases. About 18% of the actinomycetes showed also antifungal activity. Study of the influence of two different culture media on production of bioactive molecules showed that the higher antimicrobial activity was obtained in M2 when compared to TSB. The results from this study provide evidence that the streptomycetes in the rhizosphere soils could be promising sources for antimicrobial bioactive agents.  相似文献   

12.
Limited information is available with regards to the microbial growth kinetics of Streptomyces coelicolor A3(2) immobilised in pressurised membrane gradostat reactors (MGR). The purpose of this study was to quantify the growth kinetics of the filamentous bacterium immobilised on the external surface of ceramic membranes. The single fibre MGR's (SFMGR) were operated using a pneumatic system to supply humidified pressurised air to the extra capillary space (ECS). The nutrient growth medium was supplied to the lumen of the ceramic membrane in the dead-end mode. The growth curve that was obtained for S. coelicolor A3(2) showed the presence of two growth cycles (biphasic growth) from ±66 to 162 h and ±162 to 354 h, respectively, with no noticeable intermediate lag phase. A faster specific growth rate of 0.049 h−1 was obtained for the first growth cycle, with a lower specific growth rate in the range of ±0.013 to 0.019 h−1 obtained for the second growth cycle. The growth kinetics of S. coelicolor A3(2) within a pressurised MGR has not been reported previously.  相似文献   

13.

Background  

Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes).  相似文献   

14.
15.
The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora.  相似文献   

16.
Sugar mill by-products compost may be a good soil amendment to promote tomato (Lycopersicon esculentum L.) growth. In addition, the compost may further promote plant growth by inoculation with N2-fixing bacteria. Compost from sugar-mill waste was prepared with and without the N2-fixing bacteria, Azotobacter vinelandii, Beijerinckia derxii and Azospirillum sp. and incubated for 50 days. Each compost type was added to 10 kg of soil in pots at rates of 0, 15, and 45 g with and without fertilizer N at rates of 0, 0.75, and 1.54 g. A blanket application of P and K was applied to all pots. Shoot and root dry weights and N content of the whole plant was measured at 55 days. Dry weight of tomato shoots was increased by 40% by addition of fertilizer N and root weight was increased by 66%. Without fertilizer N the high rate of inoculated compost increased shoot growth 180% and uninoculated compost increased shoot growth 112%. For most treatments with and without fertilizer N, inoculated compost enhanced shoot growth and nitrogen content more than uninoculated compost. Root weights were nearly doubled by addition of either compost in comparison to the 0 N treatment. At the low rate of compost addition without fertilizer N, root weight was the same for uninoculated and inoculated compost but at the high rate of compost addition root weight was 32% higher for inoculated compost. The N2-fixing bacteria colonized roots when inoculated compost was used. Sugar mill by-products compost proved to be an effective soil amendment for promoting the growth of tomato plants.  相似文献   

17.

Background  

Streptomyces coelicolor is a bacterium with a vast repertoire of metabolic functions and complex systems of cellular development. Its genome sequence is rich in genes that encode regulatory proteins to control these processes in response to its changing environment. We wished to apply a recently published bioinformatic method for identifying novel regulatory sequence signals to gain new insights into regulation in S. coelicolor.  相似文献   

18.
The aim of this study was to isolate and screen actinomycetes from solitary wasp and swallow bird mud nests for antimicrobial activity. The actinomycetes were isolated from soil of nests of solitary wasp and swallow bird, and identified on the basis of morphological characteristics and molecular biological methods. A total of 109 actinomycetal isolates were obtained from 12 soil samples (6 from each habitat) using two media. The highest number of actinomycetes were recovered on Humic acid vitamin agar media (65.13%, n = 71) as compared to actinomycetes isolation agar media (34.86%, n = 38). The antimicrobial activity of actinomycetes isolates was determined using the agar plug method. Among 109 isolates, 51 isolates (46.78%) showed antibacterial activity by agar plug assay. The morphological and molecular characteristics confirmed that the most of active isolates in both sample belonged to the genus Streptomyces, the other potential genera like Streptosporangium, Actinomadura, Saccharopolyspora, Thermoactinomycetes and Nocardia were also recovered, but in a low frequency. The isolates designated as 8(1)*, BN-6, MN 2(6), MN 2(7) and MN 9(V) showed most promising activity against various drug resistant bacterial pathogens. It seems that the promising isolates from these unusual/unexplored habitats may prove to be an important step in development of drug for treating multi-drug resistant bacterial pathogens.  相似文献   

19.
Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 ± 0.4-fold enhanced production of geosmin was observed.  相似文献   

20.
Since microorganisms normally co-exist with other species in nature, they have developed complex metabolic and physiological responses as a result of such interspecies interactions. We utilized some of these interactions by introducing heat-killed cells of Bacillus subtilis and Staphylococcus aureus to Streptomyces coelicolor cultures and, as a result, stimulated undecylprodigiosin production. Undecylprodigiosin is not only an antibiotic; it has also been attributed with antitumor activities, but, in a defined medium, pure cultures of S. coelicolor produced only low concentrations. Elicitation with B. subtilis increased the maximum undecylprodigiosin concentration by threefold and S. aureus by fivefold compared with the pure culture of S. coelicolor. Growth and glucose consumption of elicited S. coelicolor, however, remained similar to those observed in the pure culture. Furthermore, another positive outcome of the elicitation with both B. subtilis and S. aureus was the earlier onset of undecylprodigiosin production by 24 h compared with the pure culture of S. coelicolor. This is the first time that such a phenomenon has been seen in 2L bioreactors. Our work supports the use of biotic elicitation in order to enhance the production of secondary metabolites for industrial-scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号