首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplasmas are plant‐pathogenic Mollicutes transmitted by leafhoppers, planthoppers, and psyllids in a persistent propagative manner. Chrysanthemum yellows phytoplasma (CY) is a member of ‘Candidatus Phytoplasma asteris’, 16Sr‐IB, and is transmitted by at least three leafhopper species, Macrosteles quadripunctulatus Kirschbaum, Euscelidius variegatus Kirschbaum, and Euscelis incisus Kirschbaum (all Homoptera: Cicadellidae: Deltocephalinae). Although M. quadripunctulatus transmits CY with very high efficiency (near 100%), 25% of E. variegatus repeatedly fail to transmit CY. The aims of this work were to correlate vector ability with different pathogen distribution in the insect body and to investigate the role of midgut and salivary glands as barriers to CY transmission. Euscelidius variegatus individuals acquired CY by feeding on infected plants or by abdominal microinjection of a phytoplasma‐enriched suspension. Insects were individually tested for transmission on daisy seedlings [Chrysanthemum carinatum Schousboe (Asteraceae)], and thereafter analysed by real‐time polymerase chain reaction (PCR) for CY concentration on whole insects or separately on heads and the rest of the body. Hoppers were classified as early and late transmitters or non‐transmitters, according to the time inoculated plants required for expression of CY symptoms. Similar transmission efficiencies were achieved following feeding or abdominal microinjection, suggesting that salivary glands may be a major barrier to transmission. Following acquisition from infected plants, all transmitters tested positive by PCR, and 60% of non‐transmitters also tested positive although with a significantly lower CY concentration. This indicates that a minimum number of phytoplasma cells may be required for successful transmission. The midgut may have prevented phytoplasma entry into the haemocoel of PCR‐negative non‐transmitters. Results suggest that both midgut and salivary glands may act as barriers. To assess the effect on CY transmission of a specific parasitic bacterium of E. variegatus, tentatively named BEV (Bacterium Euscelidius variegatus), we established a BEV‐infected population by abdominal microinjection of BEV bacteria. The presence of BEV did not significantly alter the efficiency of CY transmission.  相似文献   

2.
A transovarially transmitted, Gram-negative bacterium (BEV) reduced the median longevity of congenitally infected Euscelidius variegatus 54%, compared to uninfected controls of the same age and bred from the same parental stock. Mean fecundity was reduced over 80%, and nymphal development took almost 50% longer. Infected surviving adults of both sexes, however, weighed significantly more than uninfected controls. Infection of E. variegatus with BEV significantly reduced the transmission of the plant pathogenic mycoplasmalike organism causing X-disease in celery. The pathological effects of the BEV bacterium on its leafhopper host imply that infection by means other than transovarial transmission is necessary for the bacterium to persist in nature.  相似文献   

3.
Ma H  Chen S  Yang J  Chen S  Liu H 《Molecular biology reports》2011,38(7):4749-4764
Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two economically important marine fish species for aquaculture in China, Korea and Japan. Construction of genetic linkage maps is an interesting issue for molecular marker-assisted selection (MAS) and for better understanding the genome structure. In the present study, we constructed genetic linkage maps for both fish species using AFLP and microsatellite markers based on an interspecific F1 hybrid family (female V. moseri and male V. variegatus). The female genetic map comprised 98 markers (58 AFLP markers and 40 microsatellite markers), distributing in 27 linkage groups, and spanning 637 cM with an average resolution of 8.9 cM. Whereas the male genetic map consisted of 86 markers (48 AFLP and 38 microsatellite markers) in 24 linkage groups, covering a length of 625 cM with an average marker spacing of 10 cM. The expected genome length was 1,128 cM in female and 1,115 cM in male, and the estimated coverage of genome was 56% for both genetic maps. Moreover, five microsatellite markers were observed to be common to both genetic maps. This is the first time to report the genetic linkage maps of V. moseri and V. variegatus that could serve as the basis for genetic improvement and selective breeding, candidate genes cloning, and genome structure research.  相似文献   

4.
A bacterial parasite (designated as BEV) of the leafhopper Euscelidius variegatus, which is passed transovarially to offspring, was transmitted from insect to insect via feeding of the insects in plants. The rate of bacterial infection of leafhoppers fed upon plants that had previously been exposed to BEV-infected leafhoppers declined with an increase in the time that infected leafhoppers had been off rye grass. Transmission of BEV also occurred on sugar beet and barley but not celery. The bacterium was also transmitted to and acquired from membrane-encased artificial diets. There was no evidence that the bacterium was transmitted via plant surfaces, but transmission and direct culture assays from plants indicated that the bacterium did not multiply or move within plants. This parasite-host relationship may represent a primitive stage in either the evolution of intracellular symbiosis with its insect host or to alternative parasitization of plant and insect hosts via insect transmission, as is the case for insect-vectored plant pathogens.Correspondence to: A.H. Purcell.  相似文献   

5.
Deep‐sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co‐occur at deep‐sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome‐wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep‐sea chemosynthetic environments.  相似文献   

6.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

7.

Background  

Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of Ty3/gypsy-like LTR retrotransposons that led to massive genomic expansion in three Helianthus (sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.  相似文献   

8.
The plastid genome of Trifolium subterraneum is 144,763 bp, about 20 kb longer than those of closely related legumes, which also lost one copy of the large inverted repeat (IR). The genome has undergone extensive genomic reconfiguration, including the loss of six genes (accD, infA, rpl22, rps16, rps18, and ycf1) and two introns (clpP and rps12) and numerous gene order changes, attributable to 14–18 inversions. All endpoints of rearranged gene clusters are flanked by repeated sequences, tRNAs, or pseudogenes. One unusual feature of the Trifolium subterraneum genome is the large number of dispersed repeats, which comprise 19.5% (ca. 28 kb) of the genome (versus about 4% for other angiosperms) and account for part of the increase in genome size. Nine genes (psbT, rbcL, clpP, rps3, rpl23, atpB, psbN, trnI-cau, and ycf3) have also been duplicated either partially or completely. rpl23 is the most highly duplicated gene, with portions of this gene duplicated six times. Comparisons of the Trifolium plastid genome with the Plant Repeat Database and searches for flanking inverted repeats suggest that the high incidence of dispersed repeats and rearrangements is not likely the result of transposition. Trifolium has 19.5 kb of unique DNA distributed among 160 fragments ranging in size from 30 to 494 bp, greatly surpassing the other five sequenced legume plastid genomes in novel DNA content. At least some of this unique DNA may represent horizontal transfer from bacterial genomes. These unusual features provide direction for the development of more complex models of plastid genome evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background  

The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency.  相似文献   

10.
All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex‐linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole‐genome scans that the sex‐associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of ‘turnover’ of sex‐determination regions in animals. We performed whole‐genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex‐linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex‐associated SNPs revealed this to be an XY sex‐determining system. Estimated divergence times of X and Y haplotype sequences (6–7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex‐determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.  相似文献   

11.
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.  相似文献   

12.
《Genomics》2021,113(2):717-726
High quality genome is of great significance for the mining of biological information resources of species. Up to now, the genomic information of several important economic flatfishes has been well explained. All these fishes are eyes on left side-type, and no high-quality genome of eyes on right side-type species has been reported. In this study, we applied a combined strategy involving stLFR and Hi-C technologies to generate sequencing data for constructing the chromosomal genome of Verasper variegates, which belongs to Pleuronectidae with characteristic of eyes on right side. The size of genome of V. variegatus is 556 Mb. More than 97.2% of BUSCO genes were detected, and N50 lengths of the contigs and scaffolds reached 79.8 Kb and 23.8 Mb, respectively, demonstrating the outstanding completeness and sequence continuity of the genome. A total of 22,199 protein-coding genes were predicted in the assembled genome, and more than 95% of those genes could be functionally annotated. Meanwhile, the genomic collinearity, gene family and phylogenetic analyses of similar species in Pleuronectiformes were also investigated and portrayed for metamorphosis and benthic adaptation. Sex related genes mapping has also been achieved at the chromosome level. This study is the first chromosomal level genome of a Pleuronectidae fish (V. variegatus). The chromosomal genome assembly constructed in this work will not only be valuable for conservation and aquaculture studies of the V. variegatus but will also be of general interest in the phylogenetic and taxonomic studies of Pleuronectiformes.  相似文献   

13.
The phylogenetic relationship of a nonflagellated, Gram-negative, rod-shaped intracellular bacterial parasite (BEV) of the leafhopperEuscelidius variegatus to other bacteria within the classProteobacteria was determined by sequence analysis of 16S rDNAs. The presence of specific signature nucleotides showed this bacterium to be a member of the -3 subdivision of theProteobacteria. Phylogenetic analysis based on maximum parsimony placed BEV within a clade in theEnterobacteriaceae, which includes a number of bacteria that are facultative symbiotes of insects and have a common ancestor withProteus vulgaris. Within this clade, BEV is most closely related to a bacterium identified as the secondary endosymbiote of another homopteran, the pea aphid,Acyrthosiphon pisum.  相似文献   

14.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

15.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.  相似文献   

16.
Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60‐kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60‐kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri‐specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance.  相似文献   

17.
Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole‐genome shotgun sequencing of the nuclear genome of flax. Seven paired‐end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep‐coverage (approximately 94× raw, approximately 69× filtered) short‐sequence reads (44–100 bp), produced a set of scaffolds with N50 = 694 kb, including contigs with N50 = 20.1 kb. The contig assembly contained 302 Mb of non‐redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole‐genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis‐assembly of regions at the genome scale. A total of 43 384 protein‐coding genes were predicted in the whole‐genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (Ks) observed within duplicate gene pairs was consistent with a recent (5–9 MYA) whole‐genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam‐A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole‐genome shotgun short‐sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.  相似文献   

18.

Background  

Animal mitochondrial introns are rare. In sponges and cnidarians they have been found in the cox 1 gene of some spirophorid and homosclerophorid sponges, as well as in the cox 1 and nad 5 genes of some Hexacorallia. Their sporadic distribution has raised a debate as to whether these mobile elements have been vertically or horizontally transmitted among their hosts. The first sponge found to possess a mitochondrial intron was a spirophorid sponge from the Tetillidae family. To better understand the mode of transmission of mitochondrial introns in sponges, we studied cox 1 intron distribution among representatives of this family.  相似文献   

19.
20.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号