首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Candidatus Liberibacter solanacearum” (Proteobacteria) is an important pathogen of solanaceous crops (Solanales: Solanaceae) in North America and New Zealand, and is the putative causal agent of zebra chip disease of potato. This phloem-limited pathogen is transmitted to potato and other solanaceous plants by the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). While some plants in the Convolvulaceae (Solanales) are also known hosts for B. cockerelli, previous efforts to detect Liberibacter in Convolvulaceae have been unsuccessful. Moreover, studies to determine whether Liberibacter can be acquired from these plants by B. cockerelli are lacking. The goal of this study was to determine whether horizontal transmission of Liberibacter occurs among potato psyllids on two species of Convolvulaceae, sweet potato (Ipomoea batatas) and field bindweed (Convolvulus arvensis), which grows abundantly in potato growing regions of the United States. Results indicated that uninfected psyllids acquired Liberibacter from both I. batatas and C. arvensis if infected psyllids were present on plants concurrently with the uninfected psyllids. Uninfected psyllids did not acquire Liberibacter from plants if the infected psyllids were removed from the plants before the uninfected psyllids were allowed access. In contrast with previous reports, PCR did detect the presence of Liberibacter DNA in some plants. However, visible amplicons were faint and did not correspond with acquisition of the pathogen by uninfected psyllids. None of the plants exhibited disease symptoms. Results indicate that horizontal transmission of Liberibacter among potato psyllids can occur on Convolvulaceae, and that the association between Liberibacter and Convolvulaceae merits additional attention.  相似文献   

3.
Candidatus Liberibacter species are Gram‐negative bacteria that live as phloem‐limited obligate parasites in plants, and are associated with several plant diseases. These bacteria are transmitted by insects called psyllids, or jumping plant lice, which feed on plant phloem sap. Citrus huanglongbing (yellow shoot) or citrus greening disease is associated with three different species of Ca. Liberibacter – Ca. L. asiaticus, Ca. L. africanus and Ca. L. americanus – all originally found on different continents. Ca. L. asiaticus is the most severe pathogen, spread by Asian citrus psyllid Diaphorina citri and causing devastating epidemics in several countries. Ca. L. africanus occurs in Africa where it is spread by the African citrus psyllid Trioza erytreae. Ca. Liberibacter solanacearum is associated with diseases in several solanaceous plants, and transmitted by potato psyllid Bactericera cockerelli. Zebra chip disease is causing large damage in potato crops in North America. In Europe Ca. Liberibacter solanacearum is associated with diseases of the Apiaceae family of plants, carrot and celery, and transmitted by psyllids Trioza apicalis and Bactericera trigonica. When Ca. Liberibacter is suspected as the disease agent, the diagnosis is confirmed by DNA‐based detection methods. Ca. Liberibacter‐associated plant diseases can be controlled by using healthy plant propagation material, eradicating symptomatic plants, and by controlling the psyllid populations spreading the disease.  相似文献   

4.
The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), is a serious pest of potatoes that can cause yield loss by direct feeding and by transmitting a bacterial pathogen, Candidatus Liberibacter psyllaurous (also known as Candidatus L. solanacearum), which is associated with zebra chip disease of this crop. Current pest management practices rely on the use of insecticides for control of potato psyllid to lower disease incidences and increase yields. Imidacloprid is typically applied at potato planting, and it remains unknown if imidacloprid has any effect on potato psyllid feeding behavior. Thus, our specific objectives of this study were to determine and characterize the effects of imidacloprid treatment (0.11 ml l?1) to potato plants on adult potato psyllid feeding behavior 1, 2, and 4 weeks post‐application. Electrical penetration graph (EPG) recordings of potato psyllid feeding revealed six EPG waveforms, which include non‐probing (NP), intercellular stylet penetration (C), initial contact with phloem tissue (D), salivation into phloem sieve elements (E1), phloem sap ingestion (E2), and ingestion of xylem sap (G). The number of NP events and the duration of individual NP events significantly increased on plants treated with imidacloprid compared with untreated controls. Potato psyllids exhibited significant decreases in the number of phloem salivation events on plants treated with imidacloprid. Waveform durations and waveform durations per event for E2 and G were significantly decreased for psyllids on plants treated with imidacloprid compared with untreated controls. These data suggest that the effective use of imidacloprid to reduce transmission of Ca. Liberibacter psyllaurous is related to the negative effects of imidacloprid on psyllid feeding.  相似文献   

5.
A new huanglongbing (HLB) “Candidatus Liberibacter” species is genetically characterized, and the bacterium is designated “Candidatus Liberibacter psyllaurous.” This bacterium infects the psyllid Bactericera cockerelli and its solanaceous host plants potato and tomato, potentially resulting in “psyllid yellowing.” Host plant-dependent HLB transmission and variation in psyllid infection frequencies are found.  相似文献   

6.
The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions of vector efficiency.  相似文献   

7.
The impact of drought stress on tripartite plant-pathogen-vector interactions constitutes a complex and largely understudied field of plant-insect interaction. A number of studies explored these topics using aphid vectors of plant pathogens, but few have considered the interactions between drought-stressed plants and pathogen-transmitting psyllids. The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is one of the key pests of solanaceous crops in the USA that causes direct injury as well as indirect injury through transmission of a bacterial pathogen, Candidatus Liberibacter solanacearum (Lso), the causal agent of zebra chip. Previous studies explored the impact of Lso infection and drought stress on B. cockerelli development and reproductive rate separately, but no research to date has evaluated whether drought stress and Lso infection alter feeding behavior of the insects. We explored this using the electrical penetration graph (EPG) technique and monitored feeding behavior of Lso-infected and uninfected potato psyllids on well-watered and drought-stressed tomato (Solanum lycopersicum L., Solanaceae). We found that drought stress had a significant effect on feeding behavior associated with salivation into the phloem and phloem ingestion, both linked to Lso transmission. Furthermore, infected potato psyllids in particular produced a higher number of events associated with these feeding behaviors and remained in these phases longer in well-watered plants than in plants that were under drought stress. We also reported a new and previously undescribed waveform H of unknown biological function that was produced by the psyllids. This is the first study that considered the impact of bacterial infection and concomitant drought stress on feeding behavior of an insect quantified using EPG.  相似文献   

8.
9.
Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.  相似文献   

10.
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

11.
The potato psyllid, Bactericera cockerelli (?ulc), is a pest of potato, tomato, and some other solanaceous vegetables and has also been incriminated in the transmission of a bacterial pathogen, Candidatus Liberibacter solanacearum, resulting in a serious disease known as ‘zebra chip’. Although there are several reports of fungal pathogens in psyllids, there are none from B. cockerelli, nor have any fungi been evaluated against it. Five isolates of fungi, one Beauveria bassiana, two Metarhizium anisopliae and two Isaria fumosorosea, were bioassayed against B. cockerelli on potato leaves under ideal conditions for the fungi. All applications were made with a Potter spray tower. With the exception of concentration-effect studies, all other applications were made using 107 conidia/mL in a 2-mL aqueous suspension. All isolates except B. bassiana, produced 95–99% mortality, corrected for control mortality, in adults 2–3 days after application of conidia and 91–99% in nymphs 4 days after application. The corrected mortalities for adults and nymphs treated with B. bassiana were 53 and 78%, respectively, 4 days after application. I. fumosorosea Pfr 97 produced 95% corrected mortality in both first and late third instar nymphs. M. anisopliae (F 52) produced 96% corrected mortality in first and third instar nymphs. Pfr 97 and F 52 were evaluated for insecticidal activity against third instar B. cockerelli using 105, 106, and 107 conidia per mL. Mortality produced by I. fumosorosea Pfr 97 ranged from 83 to 97% and that of M. anisopliae F 52 was 88 to 95% at these concentrations.  相似文献   

12.
The Asian citrus psyllid (AsCP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus associated with the citrus disease huanglongbing (HLB). Commonly referred to as citrus greening disease in the USA, HLB causes reduced fruit yields, quality, and ultimately tree death and is considered the most serious citrus disease. HLB has become a major limiting factor to the production of citrus worldwide. Studies of HLB have been impeded by the fact that C. Liberibacter has not yet been cultured on artificial nutrient media. After being acquired by a psyllid, C. Liberibacter asiaticus is reported to replicate within the psyllid and is retained by the psyllid throughout its life span. We therefore hypothesized that C. Liberibacter asiaticus could be cultured in vitro using psyllid cell cultures as the medium and investigated the establishment of a pure culture for AsCP cells. Several commercially available insect cell culture media along with some media we developed were screened for viability to culture cells from AsCP embryos. Cells from psyllid tissues adhered to the plate and migration was observed within 24 h. Cells were maintained at 20°C. We successfully established primary psyllid cell cultures, referred to as DcHH-1, for D. citri Hert-Hunter-1, with a new media, Hert-Hunter-70.  相似文献   

13.
Secondary Endosymbionts of Psyllids Have Been Acquired Multiple Times   总被引:7,自引:0,他引:7  
Previous studies have established that psyllids (Hemiptera, Psylloidea) contain primary endosymbionts, designated as Carsonella ruddii, which cospeciate with the psyllid host. This association appears to be the consequence of a single infection of a psyllid ancestor with a bacterium. Some psyllids may have additional secondary (S-) endosymbionts. We have cloned and sequenced the 16S–23S ribosomal RNA genes of seven representative psyllid S-endosymbionts. Comparison of the S-endosymbiont phylogenetic trees with those of C. ruddii indicates a lack of congruence, a finding consistent with multiple infections of psyllids with different precursors of the S-endosymbionts and/or possible horizontal transmission. Additional comparisons indicate that the S-endosymbionts are related to members of the Enterobacteriaceae as well as to several other endosymbionts and insect-associated bacteria. Received: 2 May 2000 / Accepted: 8 June 2000  相似文献   

14.
Carrot psyllid, Trioza apicalis, is a serious pest of carrot in Northern Europe, as it can significantly damage young carrot seedlings in a period as short as 3 days. This study was conducted to investigate effects of carrot psyllid feeding at different plant growth stages on carrot yield and to assess changes in content of sugars, phenolics and related compounds in carrot roots resulting from the psyllid feeding. In addition, reflectance of carrot leaves was measured to assess the intensity of discolouration in damaged leaves. Results showed that carrot yield was significantly reduced by a 3‐day carrot psyllid feeding period when the seedlings were exposed to psyllids at 1‐ or 2‐leaf stage. However, at 4‐leaf stage feeding by one carrot psyllid did not reduce yield. Sucrose concentration in the damaged roots was significantly decreased, whereas concentrations of some phenolic compounds were significantly increased. The reflectance of leaves of damaged carrots differed significantly from those of undamaged control leaves. These observations indicate that carrot psyllid damage has potential to lower not only the carrot yield, but also the carrot crop quality. No phytoplasma was detected in the carrots exposed to psyllids, but recently, T. apicalis has been associated with ‘Candidatus Liberibacter solanacearum’. The role of carrot psyllid feeding and the psyllid‐associated bacterium in the damage formation are discussed.  相似文献   

15.
Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli ?ulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, “Candidatus Liberibacter solanacearum” (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2O2) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above‐mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2O2, or SBB treatments. The compatibility assays indicated that irradiation and H2O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.  相似文献   

16.
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field‐collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3–5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host‐symbionts interactions between D. citri and its associated endosymbionts.  相似文献   

17.
《Journal of Asia》2022,25(2):101884
The Asian citrus psyllid (Diaphorina citri) is a major pest of the citrus industry and is also the vector for Candidatus Liberibacter asiaticus (CLas), a destructive Huanglongbing (HLB) disease of citrus trees. Insect endosymbionts and gut bacteria play important roles in vector-pathogen interactions and host immunity. Thus, our aim was to evaluate the correlation between CLas infection and the microbiome in D. citri by conducting 16S rRNA amplification sequencing on insects successfully and unsuccessfully infected with CLas (CLas-infected and non-infected). Genera Candidatus Profftella, Wolbachia, and Candidatus Carsonella were highly abundant genera in all tested samples. Compared with the non-infected and control groups, CLas-infected samples harboured more observed OTUs and showed higher alpha diversity metrics. Principal coordinate analysis based on beta-diversity metrics indicated two distinct clusters between the CLas-infected samples and non-infected/control samples. Subsequent LEfSe analysis revealed that Candidatus Profftella was more abundant in the non-infected group than in the control and CLas-infected groups. The interaction network also indicated a co-exclusion relationship between Candidatus Profftella and CLas, while CLas co-existed with Wolbachia, several Enterobacteriaceae spp., and multiple other bacteria. Our study provides insight into the interaction between the microbiome community in D. citri and CLas, which can facilitate the management of this pest and its associated pathogen.  相似文献   

18.
he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial ‘Candidatus Liberibacter asiaticus’ and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium ‘Candidatus Profftella armatura’ in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium ‘Candidatus Carsonella ruddii’ in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector’s symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.  相似文献   

19.
Candidatus Liberobacter,” the uncultured bacterium associated with citrus Huanglongbing (HLB) disease, is an α-Proteobacteria, and two species, “Candidatus L. africanum” and “Candidatus L. asiaticum,” have been characterized by sequence analysis of the 16S rDNA and β operon (rplKAJL-rpoBC) genes. These genes were isolated by PCR and random cloning of DNA from infected plants. However, this strategy is laborious and allowed selection of only three Liberobacter DNA fragments. In this paper, we described isolation of additional genes using Random Amplified Polymorphic DNA (RAPD). In total, 102 random 10-mer primers were used in PCR reactions on healthy and Liberobacter-infected plant DNA. Eight DNA bands amplified from infected plant DNA were cloned and analyzed. Six of them were found to be part of the Liberobacter genome by sequence and hybridization experiments. On these DNA fragments, four genes were identified: nusG, pgm, omp, and a hypothetical protein gene. These results indicate that RAPD can be used to clone DNA of uncultured organisms. Received: 14 September 1998 / Accepted: 6 October 1998  相似文献   

20.
The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will provide a faster and more convenient method for screening of suitable RNAi target sequences in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号