首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The role of the OOP antisense RNA in coliphage λ development   总被引:1,自引:1,他引:0  
We have made a derivative of bacteriophage lambda that makes no OOP antisense RNA. The mutant phage carries a point mutation that inactivates the OOP promoter, po. The phages lambda + and lambda po- have identical plaque morphologies, one-step growth curves, and frequencies of lysogenization of a sensitive host. OOP RNA synthesis is weakly repressed by the Escherichia coli LexA protein. Consonant with this inducibility of OOP RNA synthesis by ultraviolet light, we find a two-fold greater phage burst following ultraviolet induction of a lambda + than of a lambda po- prophage. In lambda + infections, OOP RNA causes two cleavage events in cll mRNA: one is in the 3'-end of the coding region, and the second is in the intercistronic region between the cll and O genes. The cll gene fragments are subject to additional hydrolytic events, and cll mRNA levels are several-fold lower in lambda + than in lambda po- infections late in the infection cycle. However, O mRNA levels are almost unaffected by the po- mutation.  相似文献   

10.
11.
Formation of the strand-separated, open complex between RNA polymerase and a promoter involves several intermediates, the first being the closed complex in which the DNA is fully base-paired. This normally short lived complex has been difficult to study. We have used a mutant Escherichia coli RNA polymerase, deficient in promoter DNA melting, and variants of the P(R) promoter of bacteriophage lambda to model the closed complex intermediate at physiologically relevant temperatures. Our results indicate that in the closed complex, RNA polymerase recognizes base pairs as double-stranded DNA even in the region that becomes single-stranded in the open complex. Additionally, a particular base pair in the -35 region engages in an important interaction with the RNA polymerase, and a DNase I-hypersensitive site, pronounced in the promoter DNA of the open complex, was not present. The effect of temperature on closed complex formation was found to be small over the temperature range from 15 to 37 degrees C. This suggests that low temperature complexes of wild type RNA polymerase and promoter DNA may adequately model the closed complex.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号