首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequences of 40 very diverse representatives of the α-crystallin–small heat-shock protein (α-Hsp) superfamily are compared. Their characteristic C-terminal ‘α-crystallin domain' of 80–100 residues contains short consensus sequences that are highly conserved from prokaryotes to eukaryotes. There are, in addition, some positions that clearly distinguish animal from non-animal α-Hsps. The α-crystallin domain is predicted to consist of two hydrophobic β-sheet motifs, separated by a hydrophilic region which is variable in length. Combination of a conserved α-crystallin domain with a variable N-terminal domain and C-terminal extension probably modulates the properties of the various α-Hsps as stress-protective and structural oligomeric proteins. Phylogeny reconstruction indicates that multiple α-Hsps were already present in the last common ancestor of pro- and eukaryotes. It is suggested that during eukaryote evolution, animal and non-animal α-Hsps originated from different ancestral gene copies. Repeated gene duplications gave rise to the multiple α-Hsps present in most organisms.  相似文献   

2.
β/γ-Crystallins, the major structural proteins in human lens, are highly conserved in their tertiary structures but distinct in the quaternary structures. The N- and C-terminal extensions have been proposed to play a crucial role in mediating the size of β-crystallin assembly. In this research, we investigated the molecular mechanism underlying the congenital hereditary cataract caused by the recently characterized A2V mutation in βB2-crystallin. Spectroscopic experiments indicated that the mutation did not affect the secondary and tertiary structures of βB2-crystallin. The mutation did not affect the formation of βB2/βA3-crystallin heteromer as well as the stability and folding of the heteromer, suggesting that the mutation might not interfere with the protein interacting network in the lens. However, the tetramerization of βB2-crystallin at high protein concentrations was retarded by the A2V mutation. The mutation slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. Although it did not influence the stability of βB2-crystallin against denaturation induced by chemical denaturants and UV irradiation, the A2V mutant was more prone to be trapped in the off-pathway aggregation process during kinetic refolding. Our results suggested that the A2V mutation might lead to injury of lens optical properties by decreasing βB2-crystallin stability against heat treatment and by impairing βB2-crystallin assembly into high-order homo-oligomers.  相似文献   

3.
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.  相似文献   

4.
αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens.  相似文献   

5.
αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin.  相似文献   

6.
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca2+ binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca2+-binding sites. βγ-Crystallins make a separate class of Ca2+-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca2+ binding to βγ-crystallins in mediating biological processes are yet to be elucidated.  相似文献   

7.
Congenital cataract is a major cause of visual impairment and childhood blindness. The solubility and stability of crystallin proteins play critical roles in maintaining the optical transparency of the lens during the life span. Previous studies have shown that approximately 8.3%∼25% of congenital cataracts are inherited, and mutations in crystallins are the most common. In this study, we attempted to identify the genetic defect in a four-generation family affected with congenital cataracts. The congenital cataract phenotype of this four-generation family was identified as membranous cataract by slit-lamp photography. Mutation screening of the candidate genes detected a heterozygous c.465G→C change in the exon6 of the βB2-crystallin gene (CRYBB2) in all family members affected with cataracts, resulting in the substitution of a highly conserved Tryptophan to Cystine (p.W151C). The mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis and found that the transition resulted in the absence of a BslI restriction site in the affected members of the pedigree. The outcome of PolyPhen-2 and SIFT analysis predicted that this W151C mutation would probably damage to the structure and function of βB2-crystallin. Wild type (wt) and W151C mutant βB2-crystallin were expressed in human lens epithelial cells (HLECs), and the fluorescence results showed that Wt-βB2-crystallin was evenly distributed throughout the cells, whereas approximately 34.7% of cells transfected with the W151C mutant βB2-crystallin formed intracellular aggregates. Taken together, these data suggest that the missense mutation in CRYBB2 gene leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.  相似文献   

8.
Structural studies on lens proteins   总被引:3,自引:3,他引:0  
The sequence around the thiol group in lens proteins has been investigated. The proteins were converted into their carboxy[14C]methyl derivatives and submitted to partial acid hydrolysis, or digested with proteolytic enzymes. Acid hydrolysis of bovine α-crystallin gives N-seryl-(S-carboxymethyl)cysteine, Ser-CMCys (Waley, 1965a), but this dipeptide is not obtained from β-crystallin or γ-crystallin. Trypsin and chymotrypsin also give different peptides from the three crystallins. The radioactive peptide from α-crystallin and chymotrypsin has the sequence Ser-CMCys-Ser-Leu; another peptide, Asp-Leu-Leu-Phe, was also identified. The radioactive peptides obtained from bovine α-crystallin are probably also obtained from human α-crystallin, and from bovine and human albuminoid (the insoluble lens protein). α-Crystallin has been fractionated by chromatography in urea on DEAE-cellulose. Comparison of the fractions by peptide `mapping', and immunochemically, shows that they fall into two classes. The fraction eluted first differs from the later fractions, but the later fractions resemble each other The first fraction may represent impurities, or it may be a structurally different sub-unit of α-crystallin.  相似文献   

9.
The small heat shock proteins (sHSPs) are a virtually ubiquitous and diverse group of molecular chaperones that can bind and protect unfolding proteins from irreversible aggregation. It has been suggested that intrinsic disorder of the N-terminal arm (NTA) of sHSPs is important for substrate recognition. To investigate conformations of the NTA that could recognize substrates we performed replica exchange molecular dynamics simulations. Behavior at normal and stress temperatures of the dimeric building blocks of dodecameric HSPs from wheat (Ta16.9) and pea (Ps18.1) were compared because they display high sequence similarity, but Ps18.1 is more efficient in binding specific substrates. In our simulations, the NTAs of the dimer are flexible and dynamic; however, rather than exhibiting highly extended conformations they retain considerable α-helical character and contacts with the conserved α-crystallin domain (ACD). Network analysis and clustering methods reveal that there are two major conformational forms designated either “open” or “closed” based on the relative position of the two NTAs and their hydrophobic solvent accessible surface area. The equilibrium constant for the closed to open transition is significantly different for Ta16.9 and Ps18.1, with the latter showing more open conformations at elevated temperature correlated with its more effective chaperone activity. In addition, the Ps18.1 NTAs have more hydrophobic solvent accessible surface than those of Ta16.9. NTA hydrophobic patches are comparable in size to the area buried in many protein-protein interactions, which would enable sHSPs to bind early unfolding intermediates. Reduced interactions of the Ps18.1 NTAs with each other and with the ACD contribute to the differences in dynamics and hydrophobic surface area of the two sHSPs. These data support a major role for the conformational equilibrium of the NTA in substrate binding and indicate features of the NTA that contribute to sHSP chaperone efficiency.  相似文献   

10.
α-Crystallins possess molecular chaperone properties and are one of the most abundant of the lenticular proteins. Posttranslational modifications of these proteins have been implicated as a possible etiology of human cataracts. This article will review current knowledge concerning the effects of known posttranslational modifications upon the molecular chaperone properties and aggregation behavior of α-A and α-B crystallin. Based upon these effects, experimental approaches will be discussed that may be useful in the development of reagents that may selectively inhibit the cataractogenic process in the aging human lens.  相似文献   

11.
Agrobacterium tumefaciens is a plant pathogen that utilizes a type IV secretion system (T4SS) to transfer DNA and effector proteins into host cells. In this study we discovered that an α-crystallin type small heat-shock protein (α-Hsp), HspL, is a molecular chaperone for VirB8, a T4SS assembly factor. HspL is a typical α-Hsp capable of protecting the heat-labile model substrate citrate synthase from thermal aggregation. It forms oligomers in a concentration-dependent manner in vitro. Biochemical fractionation revealed that HspL is mainly localized in the inner membrane and formed large complexes with certain VirB protein subassemblies. Protein-protein interaction studies indicated that HspL interacts with VirB8, a bitopic integral inner membrane protein that is essential for T4SS assembly. Most importantly, HspL is able to prevent the aggregation of VirB8 fused with glutathione S-transferase in vitro, suggesting that it plays a role as VirB8 chaperone. The chaperone activity of two HspL variants with amino acid substitutions (F98A and G118A) for both citrate synthase and glutathione S-transferase-VirB8 was reduced and correlated with HspL functions in T4SS-mediated DNA transfer and virulence. This study directly links in vitro and in vivo functions of an α-Hsp and reveals a novel α-Hsp function in T4SS stability and bacterial virulence.  相似文献   

12.
The subunit molecular mass of α-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for α-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, αA- and αB-crystallin. These extensions are not involved in interactions with other proteins (e.g. β- and γ-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of αA-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic α-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the αA-crystallin subunit maintains its flexibility whereas the αB-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the ‘substrate’ protein. The conformation of ‘substrate’ proteins when they interact with α-crystallin has been probed by 1H NMR spectroscopy and it is concluded that α-crystallin interacts with ‘substrate’ proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of α-crystallin in the presence of increasing concentations of urea, it is proposed that α-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of α-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with ‘substrate’ proteins during the chaperone action.  相似文献   

13.
α-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of α-crystallin towards photo-induced aggregation of γ-crystallin, aggregation of insulin and on the refolding induced aggregation of β- and γ-crystallins. We observed that α-crystallin could prevent photo-aggregation of γ-crystallin and this chaperone-like activity of α-crystallin is enhanced several fold at temperatures above 30°C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that α-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30°C involving enhanced or re-organized hydrophobic surfaces of α-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to α-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.  相似文献   

14.

Background

The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood.

Methodology/Principal Findings

We found that αA-crystallin-derived peptide, 66 SDRDKFVIFLDVKHF 80, which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation.

Conclusions/Significance

These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis.  相似文献   

15.
The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.  相似文献   

16.
In addition to being refractive proteins in the vertebrate lens, the two α-crystallin polypeptides (αA and αB) are also molecular chaperones that can protect proteins from thermal aggregation. The αB-crystallin polypeptide, a functional member of the small heat shock family, is expressed in many tissues in a developmentally regulated fashion, is stress-inducible, and is overexpressed in many degenerative diseases and some tumors indicating that it plays multiple roles. One possible clue to α-crystallin functions is the fact that both polypeptides are phosphorylated on serine residues by cAMP-dependent and cAMP-independent mechanisms. The cAMP-independent pathway is an autophosphorylation that has been demonstrated in vitro, depends on magnesium and requires cleavage of ATP. Disaggregation of αA-, but not αB-crystallin into tetramers results in an appreciable increase in autophosphorylation activity, reminiscent of other heat shock proteins, and suggests the possibility that changes in the aggregation state of αA-crystallin are involved in yet undiscovered signal transduction pathways. The α-crystallin polypeptides differ with respect to their abilities to undergo cAMP-dependent phosphorylation, with preference given to the αB-crystallin chain. These differences and complexities in α-crystallin phosphorylations, coupled with the differences in expression patterns of the two α-crystallin polypeptides, are consistent with the idea that each polypeptide has distinctive structural and metabolic roles.  相似文献   

17.
Cataract is characterized by progressive protein aggregation and loss of vision. α-Crystallins are the major proteins in the lens responsible for maintaining transparency. They exist in the lens as highly polydisperse oligomers with variable numbers of subunits, and mutations in α-crystallin are associated with some forms of cataract in humans. Because the stability of proteins is dependent on optimal subunit interactions, the structural transformations and aggregation of mutant proteins that underlie cataract formation can be understood best by identifying the residue-specific inter- and intra-subunit interactions. Chemical crosslinking combined with mass spectrometry is increasingly used to provide structural insights into intra- and inter-protein interactions. We used isotope-labeled cross-linker in combination with LC-MS/MS to determine the subunit–subunit interaction sites in cataract-causing mutant αA-G98R crystallin. Peptides cross-linked by isotope-labeled (heavy and light forms) cross-linkers appear as doublets in mass spectra, thus facilitating the identification of cross-linker–containing peptides. In this study, we cross-linked wild-type (αA-WT) and mutant (αA-G98R) crystallins using the homobifunctional amine-reactive, isotope-labeled (d0 and d4) cross-linker–BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-solution digest of cross-linked complexes generates a wide array of peptide mixtures. Cross-linked peptides were enriched using strong cation exchange (SCX) chromatography followed by both MS and MS/MS to identify the cross-linked sites. We identified a distinct intermolecular interaction site between K88 — K99 in the β5 strand of the mutant αA-G98R crystallin that is not found in wild-type αA-crystallin. This interaction could explain the conformational instability and aggregation nature of the mutant protein that results from incorrect folding and assembly.  相似文献   

18.
The βγ-crystallin superfamily possesses a large number of versatile members, of which only a few members other than lens βγ-crystallins have been studied. Understanding the non-crystallin functions as well as origin of crystallin-like properties of such proteins is possible by exploring novel members from diverse sources. We describe a novel βγ-crystallin domain with S-type (Spherulin 3a type) Greek key motifs in protein vibrillin from a pathogenic bacterium Vibrio cholerae. This domain is a part of a large Vibrio-specific protein prevalent in Vibrio species (found in at least fourteen different strains sequenced so far). The domain contains two canonical N/D-N/D-X-X-S/T-S Ca2+-binding motifs, and bind Ca2+. Unlike spherulin 3a and other microbial homologues studied so far, βγ-crystallin domain of vibrillin self-associates forming oligomers of various sizes including dimers. The fractionated dimers readily form octamers in concentration-dependent manner, suggesting an association between these two major forms. The domain associates/dissociates forming dimers at the cost of monomeric populations in the presence of Ca2+. No such effect of Ca2+ has been observed in oligomeric species. The equilibrium unfolding of both forms follows a similar pattern, with the formation of an unfolding intermediate at sub-molar concentrations of denaturant. These properties exhibited by this βγ-crystallin domain are not shown by any other domain studied so far, demonstrating the diversity in domain properties.  相似文献   

19.
Infection by Leptospira interrogans has been causally associated with human and equine uveitis. Studies in our laboratories have demonstrated that leptospiral lipoprotein LruA and LruB are expressed in the eyes of uveitic horses, and that antibodies directed against LruA and LruB react with equine lenticular and retinal extracts, respectively. These reactivities were investigated further by performing immunofluorescent assays on lenticular and retinal tissue sections. Incubation of lens tissue sections with LruA-antiserum and retinal sections with LruB-antiserum resulted in positive fluorescence. By employing two-dimensional gel analyses followed by immunoblotting and mass spectrometry, lens proteins cross-reacting with LruA antiserum were identified to be α-crystallin B and vimentin. Similarly, mass spectrometric analyses identified β-crystallin B2 as the retinal protein cross-reacting with LruB-antiserum. Purified recombinant human α-crystallin B and vimentin were recognized by LruA-directed antiserum, but not by control pre-immune serum. Recombinant β-crystallin B2 was likewise recognized by LruB-directed antiserum, but not by pre-immune serum. Moreover, uveitic eye fluids contained significantly higher levels of antiibodies that recognized α-crystallin B, β-crystallin B2 and vimentin than did normal eye fluids. Our results indicate that LruA and LruB share immuno-relevant epitopes with eye proteins, suggesting that cross-reactive antibody interactions with eye antigens may contribute to immunopathogenesis of Leptospira-associated recurrent uveitis.  相似文献   

20.
The HSP70 family of molecular chaperones function to maintain protein quality control and homeostasis. The major stress-induced form, HSP70 (also called HSP72 or HSPA1A) is considered an important anti-cancer drug target because it is constitutively overexpressed in a number of human cancers and promotes cancer cell survival. All HSP70 family members contain two functional domains: an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate-binding domain (SBD); the latter is subdivided into SBDα and SBDβ subdomains. The NBD and SBD structures of the bacterial ortholog, DnaK, have been characterized, but only the isolated NBD and SBDα segments of eukaryotic HSP70 proteins have been determined. Here we report the crystal structure of the substrate-bound human HSP70-SBD to 2 angstrom resolution. The overall fold of this SBD is similar to the corresponding domain in the substrate-bound DnaK structures, confirming a similar overall architecture of the orthologous bacterial and human HSP70 proteins. However, conformational differences are observed in the peptide-HSP70-SBD complex, particularly in the loop Lα, β that bridges SBDα to SBDβ, and the loop LL,1 that connects the SBD and NBD. The interaction between the SBDα and SBDβ subdomains and the mode of substrate recognition is also different between DnaK and HSP70. This suggests that differences may exist in how different HSP70 proteins recognize their respective substrates. The high-resolution structure of the substrate-bound-HSP70-SBD complex provides a molecular platform for the rational design of small molecule compounds that preferentially target this C-terminal domain, in order to modulate human HSP70 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号