首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming α subunit and two auxiliary β subunits. The α subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel α subunits form a gene subfamily with at least 11 members. Mutations in sodium channel α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel β subunits with at least one alternative splice product. Unlike the pore-forming α subunits, the sodium channel β subunits are not structurally related to β subunits of calcium and potassium channels. Sodium channel β subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that β subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS + 1 epilepsy in human families. We propose that the sodium channel signalling complex at nodes of Ranvier involves β subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin.  相似文献   

2.
Charge transfer through the receptor membrane of the nonmyelinated ending of Pacinian corpuscles is markedly affected by temperature. The rate of rise and the amplitude of the generator potential in response to a constant mechanical stimulus increase with temperature coefficients of 2.5 and 2.0 respectively. The duration of the falling phase, presumably a purely passive component, and the rise time of the generator potential are but little affected by temperature. The following interpretation is offered: Mechanical stimulation causes the conductance of the receptor membrane to increase and ions to flow along their electrochemical gradients. An energy barrier of about 16,000 cal/mole limits the conductance change. The latter increases, thus, steeply with temperature, causing both the rate of rise and the intensity of the generator current to increase. The membrane of the adjacent Ranvier node behaves in a distinctly different manner. The amplitude of the nodal action potential is little changed over a wide range of temperature, while the durations of its rising and falling phases increase markedly. The electrical threshold of the nodal membrane is rather constant between 40 and 12°C. Below 12°C the threshold rises, and the mechanically elicited generator current fails to meet the threshold requirements of the first node. Cold block of nerve impulse initiation then ensues, although the receptor membrane still continues to produce generator potentials in response to mechanical stimulation.  相似文献   

3.
Dysfunction and/or disruption of nodes of Ranvier are now recognized as key contributors to the pathophysiology of various neurological diseases. One reason is that the excitable nodal axolemma contains a high density of Nav (voltage-gated Na+ channels) that are required for the rapid and efficient saltatory conduction of action potentials. Nodal physiology is disturbed by altered function, localization, and expression of voltage-gated ion channels clustered at nodes and juxtaparanodes, and by disrupted axon–glial interactions at paranodes. This paper reviews recent discoveries in molecular/cellular neuroscience, genetics, immunology, and neurology that highlight the critical roles of nodes of Ranvier in health and disease.  相似文献   

4.
In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin–spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.  相似文献   

5.
The intracellular trafficking machinery contributes to the spatial and temporal control of signaling by receptor tyrosine kinases (RTKs). The primary role in this process is played by endocytic trafficking, which regulates the localization of RTKs and their downstream effectors, as well as the duration and the extent of their activity. The key regulatory points along the endocytic pathway are internalization of RTKs from the plasma membrane, their sorting to degradation or recycling, and their residence in various endosomal compartments. Here I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. Cumulatively, these mechanisms illustrate a multilayered control of RTK signaling exerted by the trafficking machinery.At the cellular level, receptor tyrosine kinases (RTKs) need to be properly localized to function as signal-receiving and signal-transmitting devices (Lemmon and Schlessinger 2010). To receive signals (i.e., to bind extracellular ligands), RTKs have to be exposed at the surface of the plasma membrane. To transmit signals after ligand binding by RTKs, appropriate signaling components have to be available within intracellular compartments: in the cytoplasm, in association with membrane-bound organelles and in the cell nucleus. Importantly, the intracellular distribution of RTKs and their associated partners is not static but undergoes dynamic changes in different phases of signaling, as reflected for example by endocytic internalization of activated RTKs (Scita and Di Fiore 2010). Therefore, to function properly, the whole RTK signaling machinery within the cell has to be organized and tightly controlled both in space and in time. This organization and control are ensured by intracellular trafficking machineries, mainly by membrane transport systems such as endocytosis and secretion but also by other distribution systems (e.g., responsible for nucleocytoplasmic shuttling of proteins).Recent years have brought increasing evidence that intracellular membrane trafficking, in particular endocytic internalization, degradation, and recycling, can profoundly affect the signaling properties of RTKs (Mukherjee et al. 2006; Abella and Park 2009; Lemmon and Schlessinger 2010; Scita and Di Fiore 2010; Grecco et al. 2011; Sigismund et al. 2012). The changes in the amounts of RTKs at the cell surface can alter the cellular responses when ligands are abundant (Grecco et al. 2011). In turn, the presence of a given RTK at the plasma membrane is determined by the rates of three trafficking processes: delivery of newly synthesized molecules by the secretory pathway, their internalization (occurring for both ligand-bound and ligand-free molecules), and endocytic recycling. Although the molecular details concerning the regulation of RTK delivery to the plasma membrane are not well known, numerous studies document various mechanisms by which internalization and recycling of RTKs can be modulated, thus affecting the signaling outputs (Le Roy and Wrana 2005). In addition to the regulation of RTKs at the cell surface, trafficking processes control the intracellular fate of endocytosed RTKs. Following internalization, RTKs can be either targeted for lysosomal degradation, or recycled back to the plasma membrane (Mukherjee et al. 2006; Abella and Park 2009; Scita and Di Fiore 2010). The first route results in the termination of signaling, whereas the second allows for sustained signaling if the ligand is available. Usually degradation and recycling of a given RTK can occur simultaneously but the balance between them is crucial to determine the net signaling output. Again, the molecular mechanisms that can shift the fate of internalized RTKs between degradation and recycling, thus changing RTK signaling, have begun to emerge in recent years (Polo and Di Fiore 2006; von Zastrow and Sorkin 2007; Sorkin and von Zastrow 2009; Sigismund et al. 2012). Finally, in contrast to an early view that only RTKs present at the plasma membrane are signaling competent, it is now accepted that in many cases activated RTKs can emit signals also after internalization into intracellular compartments (Miaczynska et al. 2004b; Miaczynska and Bar-Sagi 2010; Platta and Stenmark 2011). In some cell types (e.g., in neurons), such “signaling endosomes” are crucial for signal propagation within the cell and for the final cellular response. Moreover, endosomes can serve as platforms for amplification and compartmentalization of signals emitted by RTKs (Sadowski et al. 2009; Platta and Stenmark 2011).In this article, I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. As the membrane trafficking system of a cell is highly interconnected and can be considered a global dynamic continuum, it is important to note that often one primary alteration at a given stage of RTK trafficking may affect other transport steps or compartments, thus causing generalized changes in the intracellular routing and signaling of RTKs.  相似文献   

6.
Rhodopsin Rotates in the Visual Receptor Membrane   总被引:13,自引:0,他引:13  
Dichroism can be photoinduced in a frog retina once it has been fixed with glutaraldehyde. This dichroism is absent in the normal retina because rhodopsin is free to undergo rotational Brownian motion.  相似文献   

7.
The effect of silperisone on single intact Ranvier nodes of the toad Xenopus was investigated by adding it to the bathing medium. At 100 micromol/l the following fully reversible effects were observed: 1. The spike amplitude decreased in a frequency-dependent manner. 2. Both the sodium activation and the inactivation curves as well as the potential dependence of taum were slightly shifted in the negative direction, while tauh did not change. 3. The sodium permeability constant PNa decreased by 50%. 4. The potassium currents acquired a phasic time course previously described for certain psoralens. They reached a relative maximum and then approached a lower steady state value, kappa(infinity) with a time constant of about 5 ms. Concentration-related responses of PNa, PK and of k(infinity), yielded: 5. The apparent dissociation constant of block of PNa was 110 micromol/l. 6. PK proved not to be changed by silperisone in the concentration range tested, while the variable kappa(infinity) yielded a relation similar to that of PNa except that the apparent dissociation constant was 24 micromol/l. The phasic course of the potassium currents in the presence of silperisone may be due to an open channel blockade. In view of the similarities between the actions of silperisone and 5-methoxypsoralen, it is entirely conceivable that silperisone has potential for an antispastic drug, e.g., in demyelinating diseases like multiple sclerosis.  相似文献   

8.
9.
Voltage‐gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore‐forming α subunit and two auxiliary β subunits. The α subunits are members of a large gene family containing the voltage‐gated sodium, potassium, and calcium channels. Sodium channel α subunits form a gene subfamily with at least 11 members. Mutations in sodium channel α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel β subunits with at least one alternative splice product. Unlike the pore‐forming α subunits, the sodium channel β subunits are not structurally related to β subunits of calcium and potassium channels. Sodium channel β subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that β subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS + 1 epilepsy in human families. We propose that the sodium channel signalling complex at nodes of Ranvier involves β subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin.  相似文献   

10.
Summary Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.  相似文献   

11.
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.  相似文献   

12.
Unlike several other varieties of input membrane, that of the crayfish stretch receptor develops a generator potential in response to stretch when all the Na of the medium is replaced with Li. However, Li depolarizes the receptor neuron, the soma membrane becoming more depolarized than that of the axon. During exposure to Li the cell usually fires spontaneously for a period, and when it becomes quiescent spike electrogenesis fails in the soma but persists in the axon. These effects are seen in the rapidly adapting as well as the slowly adapting cells. The block of spike electrogenesis of the soma membrane is only partly due to the Li-induced depolarization and a significant role must be ascribed to a specific effect of Li.  相似文献   

13.
Abstract: Both glutamate and reactive oxygen species have been implicated in excitotoxic neuronal injury, and mitochondria may play a key role in the mediation of this process. In this study, we examined whether glutamate-receptor stimulation and oxidative stress interact to affect the mitochondrial membrane potential (ΔΨ). We measured ΔΨ in rat forebrain neurons with the ratiometric fluorescent dye JC-1 by using laser scanning confocal imaging. Intracellular oxidant levels were measured by using the oxidation-sensitive dyes 2',7'-dichlorodihydrofluorescein (DCFH2) and dihydroethidium (DHE). Application of hydrogen peroxide (0.3–3 m M ) or 1 m M xanthine/0.06 U/ml xanthine oxidase decreased ΔΨ in a way that was independent of the presence of extracellular Ca2+ and was not affected by the addition of cyclosporin A, suggesting the presence of either a cyclosporin A-insensitive form of permeability transition, or a separate mechanism. tert -Butylhydroperoxide (730 µ M ) had less of an effect on ΔΨ than hydrogen peroxide despite similar effects on intracellular DCFH2 or DHE oxidation. Hydrogen peroxide-, tert -butylhydroperoxide-, and superoxide-enhanced glutamate, but not kainate, induced decreases in ΔΨ. The combined effect of peroxide or superoxide plus glutamate was Ca2+ dependent and was partially inhibited by cyclosporin A. These results suggest that oxidants and glutamate depolarize mitochondria by different mechanisms, and that oxidative stress may enhance glutamate-mediated mitochondrial depolarization.  相似文献   

14.
Rotational Diffusion of Rhodopsin in the Visual Receptor Membrane   总被引:35,自引:0,他引:35  
Transient photodichroism in the frog retina reveals that rhodopsin has a relaxation time of 20 µs. The site rhodopsin occupies in the membrane must therefore be highly fluid. This suggests rhodopsin may be a diffusional carrier.  相似文献   

15.
The composition of phospholipids from electric organ and from membranes enriched in acetylcholine receptors (AChRs) is analyzed in three elasmobranch fish (Torpedo marmorata, Torpedo californica, and Discopyge tschudii). Irrespective of their purity, AChR-containing membranes are similar to electric organ in lipid and fatty acid composition. The following characteristics are common to the three species: (a) Choline, ethanolamine, and serine glycerophospholipids account for 80-90% of the phospholipids. (b) Their major fatty acid constituents are monoenes, saturates, and long-chain (n-3) polyenes (especially docosahexaenoate). (c) A large proportion of the ethanolamine glycerophospholipids (30-50%) is made up by plasmenylethanolamine, which contains fewer polyenes than phosphatidylethanolamine per mole of lipid. (d) Polyphosphoinositides represent 20-30% of the inositides of electric organ. (e) Phosphatidylinositol and phosphatidate have large proportions of 20- and 22-carbon polyenes. (f) Diphosphatidylglycerol and triacylglycerols are rich in oleate but also contain long-chain polyenes. (g) Sphingomyelin has monoenes and saturates ranging from 14 to 26 carbons. Species-related variations are observed (a) in the ratios between some phospholipid classes and subclasses and (b) in the relative abundance of the major polyunsaturated acyl chains of phospholipids. Despite these differences, the average unsaturation and length of fatty acids in major phospholipid classes are similar for the three species.  相似文献   

16.
The EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migration assays that identified a new potent peptide variant. We also performed a mutational screen that determined the helical interface that mediates dimerization of the TM domain of EphA2 in cells. These results, together with molecular dynamic simulations, allowed to elucidate the molecular mechanism that TYPE7 uses to activate EphA2, where the membrane peptide acts as a molecular clamp that wraps around the TM dimer of the receptor. We propose that this binding mode stabilizes the active conformation of EphA2. Our data, additionally, provide clues into the properties that TM ligands need to have in order to achieve activation of membrane receptors.  相似文献   

17.
18.
19.
猴肝细胞膜脂蛋白(a)受体的研究   总被引:1,自引:0,他引:1  
猴肝细胞膜蛋白经 SDS- PAGE和蛋白转移电泳后用免疫印迹法测定 ,硝酸纤维素膜分别与抗牛肾上腺皮质 LDL受体的抗体、LDL、Lp( a)和 PLG温育后见有 3条不同的蛋白条带 ,分子量分别为 370 kd、2 90 kd和 80 kd.用酶标法测定猴肝细胞膜蛋白 ,发现经 Lp( a) + PLG温育后用 Lp( a)抗体反应的结果与 Lp( a)温育后用 Lp( a)抗体反应的结果比较无显著差异 ,而经 Lp( a) + PLG温育后用 PLG抗体反应的结果比单独用 PLG温育后用 PLG抗体反应的作用强 ;同样经 Lp( a) +LDL温育后用 Lp( a)抗体反应的结果与经 Lp( a)温育后用 Lp( a)抗体反应的结果比较无显著差异 ,而经 Lp( a) + LDL温育后用 LDL抗体反应比单独经 LDL温育后用 LDL抗体的反应强 ,排除Lp( a)与 PLG和 LDL的交叉反应 ,实验认为猴肝细胞膜上可能同时存在 LDL受体、PLG受体和Lp( a)受体  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号