首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein tyrosine phosphatases (PTPs) constitute a large and structurally diverse family of signaling enzymes that control the cellular levels of protein tyrosine phosphorylation. Malfunction of PTP activity has significant implications in many human diseases, and the PTP protein family provides an exciting array of validated diabetes/obesity (PTP1B), oncology (SHP2), autoimmunity (Lyp), and infectious disease (mPTPB) targets. However, despite the fact that PTPs have been garnering attention as novel therapeutic targets, they remain largely an untapped resource. The main challenges facing drug developers by the PTPs are inhibitor specificity and bioavailability. Work over the last ten years has demonstrated that it is feasible to develop potent and selective inhibitors for individual members of the PTP family by tethering together small ligands that can simultaneously occupy both the active site and unique nearby peripheral binding sites. Recent results with the bicyclic salicylic acid pharmacophores indicate that the new chemistry platform may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Structural analysis of PTP-inhibitor complexes reveals molecular determinants important for the development of more potent and selective PTP inhibitors, thus offering hope in the medicinal chemistry of a largely unexploited protein class with a wealth of attractive drug targets.  相似文献   

2.
Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion in PTPs containing an asparagine in the equivalent position [Iversen, L. F., et al. (2000) J. Biol. Chem. 275, 10300-10307]. Further, we have recently demonstrated that Gly259 in PTP1B forms the bottom of a gateway that allows easy access to the active site for a broad range of substrates, while bulky residues in the same position in other PTPs cause steric hindrance and reduced substrate recognition capacity [Peters, G. H., et al. (2000) J. Biol. Chem. 275, 18201-18209]. The current study was undertaken to investigate the feasibility of structure-based design, utilizing these differences in accessibility to the active site among various PTPs. We show that a general, low-molecular weight PTP inhibitor can be developed into a highly selective inhibitor for PTP1B and TC-PTP by introducing a substituent, which is designed to address the region around residues 258 and 259. Detailed enzyme kinetic analysis with a set of wild-type and mutant PTPs, X-ray protein crystallography, and molecular modeling studies confirmed that selectivity for PTP1B and TC-PTP was achieved due to steric hindrance imposed by bulky position 259 residues in other PTPs.  相似文献   

3.
Protein-tyrosine phosphatase 1B (PTP1B) has been implicated as an important regulator in several signaling pathways including those initiated by insulin and leptin. Potent and specific PTP1B inhibitors could serve as useful tools in elucidating the physiological functions of PTP1B and may constitute valuable therapeutics in the treatment of several human diseases. We have determined the crystal structure of PTP1B in complex with compound 2, the most potent and selective PTP1B inhibitor reported to date. The structure at 2.15-A resolution reveals that compound 2 simultaneously binds to the active site and a unique proximal noncatalytic site formed by Lys-41, Arg-47, and Asp-48. The structural data are further corroborated by results from kinetic analyses of the interactions of PTP1B and its site-directed mutants with compound 2 and several of its variants. Although many of the residues important for interactions between PTP1B and compound 2 are not unique to PTP1B, the combinations of all contact residues differ between PTP isozymes, which provide a structural basis for potent and selective PTP1B inhibition. Our data further suggest that potent, yet highly selective, PTP1B inhibitory agents can be acquired by targeting the area defined by residues Lys-41, Arg-47, and Asp-48, in addition to the previously identified second aryl phosphate-binding pocket.  相似文献   

4.
Protein-tyrosine phosphatases (PTPs) are critically involved in regulation of signal transduction processes. Members of this class of enzymes are considered attractive therapeutic targets in several disease states, e.g. diabetes, cancer, and inflammation. However, most reported PTP inhibitors have been phosphorus-containing compounds, tight binding inhibitors, and/or inhibitors that covalently modify the enzymes. We therefore embarked on identifying a general, reversible, competitive PTP inhibitor that could be used as a common scaffold for lead optimization for specific PTPs. We here report the identification of 2-(oxalylamino)-benzoic acid (OBA) as a classical competitive inhibitor of several PTPs. X-ray crystallography of PTP1B complexed with OBA and related non-phosphate low molecular weight derivatives reveals that the binding mode of these molecules to a large extent mimics that of the natural substrate including hydrogen bonding to the PTP signature motif. In addition, binding of OBA to the active site of PTP1B creates a unique arrangement involving Asp(181), Lys(120), and Tyr(46). PTP inhibitors are essential tools in elucidating the biological function of specific PTPs and they may eventually be developed into selective drug candidates. The unique enzyme kinetic features and the low molecular weight of OBA makes it an ideal starting point for further optimization.  相似文献   

5.
Protein-tyrosine phosphatases (PTPs) are considered important therapeutic targets because of their pivotal role as regulators of signal transduction and thus their implication in several human diseases such as diabetes, cancer, and autoimmunity. In particular, PTP1B has been the focus of many academic and industrial laboratories because it was found to be an important negative regulator of insulin and leptin signaling, and hence a potential therapeutic target in diabetes and obesity. As a result, significant progress has been achieved in the design of highly selective and potent PTP1B inhibitors. In contrast, little attention has been given to other potential drug targets within the PTP family. Guided by x-ray crystallography, molecular modeling, and enzyme kinetic analyses with wild type and mutant PTPs, we describe the development of a general, low molecular weight, non-peptide, non-phosphorus PTP inhibitor into an inhibitor that displays more than 100-fold selectivity for PTPbeta over PTP1B. Of note, our structure-based design principles, which are based on extensive bioinformatics analyses of the PTP family, are general in nature. Therefore, we anticipate that this strategy, here applied to PTPbeta, in principle can be used in the design and development of selective inhibitors of many, if not most PTPs.  相似文献   

6.
Protein tyrosine phosphatases (PTPs) are well-validated therapeutic targets for many human major diseases. The development of their potent inhibitors has therefore become a main focus of both academia and the pharmaceutical industry. We report herein a facile strategy toward the fabrication of new and competent PTP inhibitor entities by simply 'clicking' alkynyl amino acids onto diverse azido sugar templates. Triazolyl glucosyl, galactosyl, and mannosyl serine and threonine derivatives were efficiently synthesized via click reaction, which were then identified as potent CDC25B and PTP1B inhibitors selective over a panel of homologous PTPs tested. Their inhibitory activity and selectivity were found to largely lie on the structurally and configurationally diversified monosaccharide moieties whereon serinyl and threoninyl residues were introduced. In addition, MTT assay revealed the triazole-connected sugar-amino acid hybrids may also inhibit the growth of several human cancer cell lines including A549, Hela, and especially HCT-116. On the basis of such compelling evidence, we consider that this compound series could furnish promising chemical entities serving as new CDC25B and PTP1B inhibitors with potential cellular activity. Furthermore, the 'click' strategy starting from easily accessible and biocompatible amino acids and sugar templates would allow the modular fabrication of a rich library of new PTP inhibitors efficaciously and productively.  相似文献   

7.
A novel series of pTyr mimetics containing triaryl-sulfonamide derivatives (5a-r) are reported as potent and selective PTP1B inhibitors. Some of the test compounds (5o and 5p) showed excellent selectivity towards PTP1B over various PTPs, including TCPTP (in vitro). The lead compound 5o showed potent antidiabetic activity (in vivo), along with improved pharmacokinetic profile. These preliminary results confirm discovery of highly potent and selective PTP1B inhibitors for the treatment of T2DM.  相似文献   

8.
In the present work, the derivatives of calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene bearing four methylene(phenyl)phosphinic acid groups on the upper rim of the macrocycle were synthesized and studied as inhibitors of human protein tyrosine phosphatases. The inhibitory capacities of the three compounds towards PTP1B were higher than those for protein tyrosine phosphatases TC–PTP, MEG1, MEG2, and SHP2. The most potent sulfonylcalix[4]arene phosphinic acid displayed Ki value of 32?nM. The thiacalix[4]arene phosphinic acid was found to be a low micromolar inhibitor of PTP1B with selectivity over the other PTPs. The kinetic experiments showed that the inhibitors compete with the substrate for the active site of the enzyme. Molecular docking was performed to explain possible binding modes of the calixarene-based phosphinic inhibitors of PTP1B.  相似文献   

9.
Tyrosine kinases and phosphatases establish the crucial balance of tyrosine phosphorylation in cellular signaling, but creating specific inhibitors of protein Tyr phosphatases (PTPs) remains a challenge. Here, we report the development of a potent, selective inhibitor of Mycobacterium tuberculosis PtpB, a bacterial PTP that is secreted into host cells where it disrupts unidentified signaling pathways. The inhibitor, (oxalylamino-methylene)-thiophene sulfonamide (OMTS), showed an IC(50) of 440 +/- 50 nM and >60-fold specificity for PtpB over six human PTPs. The 2 A resolution crystal structure of PtpB in complex with OMTS revealed a large rearrangement of the enzyme, with some residues shifting >27 A relative to the PtpB:PO(4) complex. Extensive contacts with the catalytic loop provide a potential basis for inhibitor selectivity. Two OMTS molecules bound adjacent to each other, raising the possibility of a second substrate phosphotyrosine binding site in PtpB. The PtpB:OMTS structure provides an unanticipated framework to guide inhibitor improvement.  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP1B) has been implicated in the regulation of the insulin signaling pathway and represents an attractive target for the design of inhibitors in the treatment of type 2 diabetes and obesity. Inspection of the structure of PTP1B indicates that potent PTP1B inhibitors may be obtained by targeting a secondary aryl phosphate-binding site as well as the catalytic site. We report here the crystal structures of PTP1B in complex with first and second generation aryldifluoromethyl-phosphonic acid inhibitors. While all compounds bind in a previously unexploited binding pocket near the primary binding site, the second generation compounds also reach into the secondary binding site, and exhibit moderate selectivity for PTP1B over the closely related T-cell phosphatase. The molecular basis for the selectivity has been confirmed by single point mutation at position 52, where the two phosphatases differ by a phenylalanine-to-tyrosine switch. These compounds present a novel platform for the development of potent and selective PTP1B inhibitors.  相似文献   

11.
Considerable attention has been paid to protein tyrosine phosphatase 1B (PTP1B) inhibitors as a potential therapy for diabetes, obesity, and cancer. Ten caffeoylquinic acid derivatives (110) from leaves of Artemisia princeps Pamp. (Asteraceae) were identified as natural PTP1B inhibitors. Among them, chlorogenic acid (3) showed the most potent inhibitory activity (IC50 11.1?μM). Compound 3 was demonstrated to be a noncompetitive inhibitor by a kinetic analysis. Molecular docking simulation suggested that compound 3 bound to the allosteric site of PTP1B. Furthermore, compound 3 showed remarkable selectivity against four homologous PTPs. According to these findings, compound 3 might be potentially valuable for further drug development.  相似文献   

12.
4-(5-Arylidene-2,4-dioxothiazolidin-3-yl)methylbenzoic acids (2) were synthesized and evaluated in vitro as inhibitors of PTP1B and LMW-PTP, two protein tyrosine phosphatases (PTPs) which act as negative regulators of the metabolic and mitotic signalling of insulin. The synthesis of compounds 2 represents an example of utilizing phosphotyrosine-mimetics to identify effective low molecular weight nonphosphorus inhibitors of PTPs. Several thiazolidinediones 2 exhibited PTP1B inhibitory activity in the low micromolar range with moderate selectivity for human PTP1B and IF1 isoform of human LMW-PTP compared with other related PTPs.  相似文献   

13.
Protein-tyrosine phosphatases (PTPases) form a large family of enzymes that serve as key regulatory components in signal transduction pathways. Defective or inappropriate regulation of PTPase activity leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases including cancers and diabetes. For example, recent gene knockout studies in mice identify PTP1B as a promising target for anti-diabetes/obesity drug discovery. Thus, there is intense interest in obtaining specific and potent PTPase inhibitors for biological studies and pharmacological development. However, given the highly conserved nature of the PTPase active site, it is unclear whether selectivity in PTPase inhibition can be achieved. We describe a combinatorial approach that is designed to target both the active site and a unique peripheral site in PTP1B. Compounds that can simultaneously associate with both sites are expected to exhibit enhanced affinity and specificity. We also describe a novel affinity-based high-throughput assay procedure that can be used for PTPase inhibitor screening. The combinatorial library/high-throughput screen protocols furnished a small molecule PTP1B inhibitor that is both potent (K(i) = 2.4 nm) and selective (little or no activity against a panel of phosphatases including Yersinia PTPase, SHP1, SHP2, LAR, HePTP, PTPalpha, CD45, VHR, MKP3, Cdc25A, Stp1, and PP2C). These results demonstrate that it is possible to acquire potent, yet highly selective inhibitors for individual members of the large PTPase family of enzymes.  相似文献   

14.
A series of formylchromone derivatives were synthesized as PTP1B inhibitors and some of them were potent against PTP1B with IC50 values as low as 1.0 microM. They exhibited remarkable selectivity for PTP1B over other human PTPases. Kinetic studies revealed that formylchromone derivatives are irreversible and active site-directed inhibitors. Molecular modeling study identified the orientation of the inhibitor bound at the active site of PTP1B.  相似文献   

15.
Fu H  Park J  Pei D 《Biochemistry》2002,41(34):10700-10709
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that catalyze the hydrolytic removal of the phosphoryl group from phosphotyrosyl (pY) proteins. PTP inhibitors provide potential treatment of human diseases/conditions such as diabetes and obesity as well as useful tools for studying the function of PTPs in signaling pathways. In this work, we have shown that certain aryl-substituted aldehydes act as reversible, slow-binding inhibitors of modest potency against PTP1B, SHP-1, and a dual-specificity phosphatase, VHR. Attachment of the tripeptide Gly-Glu-Glu to the para position of cinnamaldehyde resulted in an inhibitor (Cinn-GEE) of substantially increased potency against all three enzymes (e.g., K(I) = 5.4 microM against PTP1B). The mechanism of inhibition was investigated using Cinn-GEE specifically labeled with (13)C at the aldehyde carbon and (1)H-(13)C heteronuclear single-quantum coherence spectroscopy. While Cinn-GEE alone showed a single cross-peak at delta 9.64 ((1)H) and delta 201 ((13)C), the PTP1B/Cinn-GEE complex showed three distinct cross-peaks at delta 7.6-7.8 ((1)H) and 130-137 ((13)C). Mutation of the catalytic cysteine (Cys-215 in PTP1B) into alanine had no effect on the cross-peaks, whereas mutation of a conserved active-site arginine (Arg-221 in PTP1B) to alanine abolished all three cross-peaks. Similar experiments with Cinn-GEE that had been labeled with (13)C at the benzylic position revealed a change in the hybridization state (from sp(2) to sp(3)) for the benzylic carbon as a result of binding to PTP1B. These results rule out the possibility of a free aldehyde, aldehyde hydrate, or hemithioacetal as the enzyme-bound inhibitor form. Instead, the data are consistent with the formation of an enamine between the aldehyde group of the inhibitor and the guanidine group of Arg-221 in the PTP1B active site. These aldehydes may provide a general core structure that can be further developed into highly potent and specific PTP inhibitors.  相似文献   

16.
Potent,selective inhibitors of protein tyrosine phosphatase 1B   总被引:4,自引:0,他引:4  
We have previously reported a novel series of oxalyl-aryl-amino benzoic acid-based, catalytic site-directed, competitive, reversible protein tyrosine phosphatase 1B (PTP1B) inhibitors. With readily access to key intermediates, we utilized a solution phase parallel synthesis approach and rapidly identified a highly potent PTP1B inhibitor (19, K(i)=76 nM) with moderate selectivity (5-fold) over T-cell PTPase (TCPTP) through interacting with a second phosphotyrosine binding site (site 2) in the close proximity to the catalytic site.  相似文献   

17.
Identification of allosteric inhibitors of PTPs has attracted great interest as a new strategy to overcome the challenge of discover potent and selective molecules for therapeutic intervention. YopH is a virulence factor of the genus Yersinia, validated as an antimicrobial target. The finding of a second substrate binding site in YopH has revealed a putative allosteric site that could be further exploited. Novel chalcone compounds that inhibit PTPs activity were designed and synthesized. Compound 3j was the most potent inhibitor, interestingly, with different mechanisms of inhibition for the panel of enzymes evaluated. Further, our results showed that compound 3j is an irreversible non-competitive inhibitor of YopH that binds to a site different than the catalytic site, but close to the well-known second binding site of YopH.  相似文献   

18.
Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild-type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate "false" positives due to modification of the active site Cys that destroy the phosphatase activity.  相似文献   

19.
Abstract

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator in insulin signaling pathways, is regarded as a potential target for the treatment of type II diabetes and obesity. However, the mechanism underlying the selectivity of PTP1B inhibitors against T-cell protein tyrosine phosphatase (TCPTP) remains controversial, which is due to the high similarity between PTP1B and TCPTP sequence and the fact that no ligand–protein complex of TCPTP has been established yet. Here, the accelerated molecular dynamics (aMD) method was used to investigate the structural dynamics of PTP1B and TCPTP that are bound by two chemically similar inhibitors with distinct selectivity. The conformational transitions during the “open” to “close” states of four complexes were captured, and free energy profiles of important residue pairs were analyzed in detail. Additional MM-PBSA calculations confirmed that the binding free energies of final states were consistent with the experimental results, and the energetic contributions of important residues were further investigated by alanine scanning mutagenesis. By comparing the four complexes, the different conformational behavior of WPD-loop, R-loop, and the second pTyr binding site induced by inhibitors were featured and found to be crucial for the selectivity of inhibitors. This study provides new mechanistic insights of specific binding of inhibitors to PTP1B and TCPTP, which can be exploited to the further structural-based inhibitor design.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号