首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented to analyse the long-term stochastic dynamics of a biological population that is at risk of extinction. From the full ecosystem the method extracts the minimal information to describe the long-term dynamics of that population by a stochastic logistic system. The method is applied to a one-predator-two-prey model. The choice of this example is motivated by a study on the near-extinction of a porcupine population by mountain lions whose presence is facilitated by mule deer taking advantage of a change in land use. The risk of extinction is quantified by the expected time of extinction of the population.  相似文献   

2.
Using a long-term demographic data set, we estimated the separate effects of demographic and environmental stochasticity in the growth rate of the great tit population in Wytham Wood, United Kingdom. Assuming logistic density regulation, both the demographic (sigma2d = 0.569) and environmental (sigma2e = 0.0793) variance, with interactions included, were significantly greater than zero. The estimates of the demographic variance seemed to be relatively insensitive to the length of the study period, whereas reliable estimates of the environmental variance required long time series (at least 15 yr of data). The demographic variance decreased significantly with increasing population density. These estimates are used in a quantitative analysis of the demographic factors affecting the risk of extinction of this population. The very long expected time to extinction of this population (approximately 10(19) yr) was related to a relatively large population size (>/=120 pairs during the study period). However, for a given population size, the expected time to extinction was sensitive to both variation in population growth rate and environmental stochasticity. Furthermore, the form of the density regulation strongly affected the expected time to extinction. Time to extinction decreased when the maximum density regulation approached K. This suggests that estimates of viability of small populations should be given both with and without inclusion of density dependence.  相似文献   

3.
Aggregation of variables of a complex mathematical model with realistic structure gives a simplified model which is more suitable than the original one when the amount of data for parameter estimation is limited. Here we explore use of a formula derived for a single unstructured population (canonical model) in predicting the extinction time for a population living in multiple habitats. In particular we focus multiple populations each following logistic growth with demographic and environmental stochasticities, and examine how the mean extinction time depends on the migration and environmental correlation. When migration rate and/or environmental correlation are very large or very small, we may express the mean extinction time exactly using the formula with properly modified parameters. When parameters are of intermediate magnitude, we generate a Monte Carlo time series of the population size for the realistic structured model, estimate the "effective parameters" by fitting the time series to the canonical model, and then calculate the mean extinction time using the formula for a single population. The mean extinction time predicted by the formula was close to those obtained from direct computer simulation of structured models. We conclude that the formula for an unstructured single-population model has good approximation capability and can be applicable in estimating the extinction risk of the structured meta-population model for a limited data set.  相似文献   

4.
Environmental threats, such as habitat size reduction or environmental pollution, may not cause immediate extinction of a population but shorten the expected time to extinction. We develop a method to estimate the mean time to extinction for a density-dependent population with environmental fluctuation. We first derive a formula for a stochastic differential equation model (canonical model) of a population with logistic growth with environmental and demographic stochasticities. We then study an approximate maximum likelihood (AML) estimate of three parameters (intrinsic growth rate r, carrying capacity K, and environmental stochasticity sigma(2)(e)) from a time series of population size. The AML estimate of r has a significant bias, but by adopting the Monte Carlo method, we can remove the bias very effectively (bias-corrected estimate). We can also determine the confidence interval of the parameter based on the Monte Carlo method. If the length of the time series is moderately long (with 40-50 data points), parameter estimation with the Monte Carlo sampling bias correction has a relatively small variance. However, if the time series is short (less than or equal to 10 data points), the estimate has a large variance and is not reliable. If we know the intrinsic growth rate r, however, the estimate of K and sigma(2)(e)and the mean extinction time T are reliable even if only a short time series is available. We illustrate the method using data for a freshwater fish, Japanese crucian carp (Carassius auratus subsp.) in Lake Biwa, in which the growth rate and environmental noise of crucian carp are estimated using fishery records.  相似文献   

5.
Environmental threats, such as habitat size reduction or environmental pollution, may not cause immediate extinction of a population but may shorten the expected time to extinction. We developed a method to estimate the mean time to extinction for a density-dependent population with environmental fluctuation and to compare the impacts of different risk factors. We first derived a formula of the mean extinction time for a population with logistic growth and environmental and demographic stochasticities expressed as a stochastic differential equation model (canonical model). The relative importance of different risk factors is evaluated by the decrease in the mean extinction time. We studied an approximated formula for the reduction in habitat size that enhances extinction risk by the same magnitude as a given decrease in survivorship caused by toxic chemical exposure. In a large population (large K) or in a slowly growing population (small r), a small decrease in survivorship can cause the extinction risk to increase, corresponding to a significant reduction in the habitat size. Finally, we studied an approximate maximum likelihood estimate of three parameters (intrinsic growth rate r, carrying capacity K, and environmental stochasticity σ 2 e ) from time series data. By Monte Carlo sampling, we can remove the bias very effectively and determine the confidence interval. We discuss here how the reliability of the estimate changes with the length of time series. If we know the intrinsic rate of population growth r, the mean extinction time is estimated quite accurately even when only a short time series is available for parameter estimation. Received: March 31, 1999 / Accepted: November 9, 1999  相似文献   

6.
The expected time to extinction of a herpes virus is calculated from a rather simple population-dynamical model that incorporates transmission, reactivation and fade-out of the infectious agent. We also derive the second and higher moments of the distribution of the time to extinction. These quantities help to assess the possibilities to eradicate a reactivating infection. The key assumption underlying our calculations is that epidemic outbreaks are fast relative to the time scale of demographic turnover. Four parameters influence the expected time to extinction: the reproduction ratio, the reactivation rate, the population size, and the demographic turn-over in the host population. We find that the expected time till extinction is very long when the reactivation rate is high (reactivation is expected more than once in a life time). Furthermore, the infectious agent will go extinct much more quickly in small populations. This method is applied to bovine herpes virus (BHV) in a cattle herd. The results indicate that without vaccination, BHV will persist in large herds. The use of a good vaccine can induce eradication of the infection from a herd within a few decades. Additional measures are needed to eradicate the virus from a whole region within a similar time-span.  相似文献   

7.
We are interested in how the addition of type heterogeneities affects the long time behaviour of models for endemic diseases. We do this by analysing a two-type version of a model introduced by Bartlett under the restriction of proportionate mixing. This model is used to describe diseases for which individuals switch states according to susceptible-->infectious-->recovered and immune, where the immunity is life-long. We describe an approximation of the distribution of the time to extinction given that the process is started in the quasi-stationary distribution, and we analyse how the variance and the coefficient of variation of the number of infectious individuals depends on the degree of heterogeneity between the two types of individuals. These are then used to derive an approximation of the time to extinction. From this approximation we conclude that if we increase the difference in infectivity between the two types the expected time to extinction decreases, and if we instead increase the difference in susceptibility the effect on the expected time to extinction depends on which part of the parameter space we are in, and we can also obtain non-monotonic behaviour. These results are supported by simulations.  相似文献   

8.
In order to predict extinction risk in the presence of reddened, or correlated, environmental variability, fluctuating parameters may be represented by the family of 1/f noises, a series of stochastic models with different levels of variation acting on different timescales. We compare the process of parameter estimation for three 1/f models (white, pink and brown noise) with each other, and with autoregressive noise models (which are not 1/f noises), using data from a model time-series (length, T) of population. We then calculate the expected increase in variance and the expected extinction risk for each model, and we use these to explore the implication of assuming an incorrect noise model. When parameterising these models, it is necessary to do so in terms of the measured ("sample") parameters rather than fundamental ("population") parameters. This is because these models are non-stationary: their parameters need not stabilize on measurement over long periods of time and are uniquely defined only over a specified "window" of timescales defined by a measurement process. We find that extinction forecasts can differ greatly between models, depending on the length, T, and the coefficient of variability, CV, of the time series used to parameterise the models, and on the length of time into the future which is to be projected. For the simplest possible models, ones with population itself the 1/f noise process, it is possible to predict the extinction risk based on CV of the observed time series. Our predictions, based on explicit formulae and on simulations, indicate that (a) for very short projection times relative to T, brown and pink noise models are usually optimistic relative to equivalent white noise model; (b) for projection timescales equal to and substantially greater than T, an equivalent brown or pink noise model usually predicts a greater extinction risk, unless CV is very large; and (c) except for very small values of CV, for timescales very much greater than T, the brown and pink models present a more optimistic picture than the white noise model. In most cases, a pink noise is intermediate between white and brown models. Thus, while reddening of environmental noise may increase the long-term extinction probability for stationary processes, this is not generally true for non-stationary processes, such as pink or brown noises.  相似文献   

9.
Global temperatures are expected to rise between 1.1 and 6.4°C over the next 100 years, although the exact rate will depend on future greenhouse emissions, and will vary spatially. Temperature can alter an individual's metabolic rate, and consequently birth and death rates. In declining populations, these alterations may manifest as changes in the rate of that population's decline, and subsequently the timing of extinction events. Predicting such events could therefore be of considerable use. We use a small‐scale experimental system to investigate how the rate of temperature change can alter a population's time to extinction, and whether it is possible to predict this event using a simple phenomenological model that incorporates information about population dynamics at a constant temperature, published scaling of metabolic rates, and temperature. In addition, we examine 1) the relative importance of the direct effects of temperature on metabolic rate, and the indirect effects (via temperature driven changes in body size), on predictive accuracy (defined as the proximity of the predicted date of extinction to the mean observed date of extinction), 2) the combinations of model parameters that maximise accuracy of predictions, and 3) whether substituting temperature change through time with mean temperature produces accurate predictions. We find that extinction occurs earlier in environments that warm faster, and this can be accurately predicted (R2 > 0.84). Increasing the number of parameters that were temperature‐dependent increased the model's accuracy, as did scaling these temperature‐dependent parameters with either the direct effects of temperature alone, or with the direct and indirect effects. Using mean temperature through time instead of actual temperature produces less accurate predictions of extinction. These results suggest that simple phenomenological models, incorporating metabolic theory, may be useful in understanding how environmental change can alter a population's rate of extinction. Synthesis Understanding how populations will respond to future climatic change is a key goal in ecology, however the exact rate of future warming will vary both spatially and temporally. Consequently, mathematical models must be used to understand the potential range of future population dynamics under various warming scenarios. We use a combination of experimentation and modelling to show that the effects of varying rates of environmental change on population dynamics can be predicted by a simple model. However, the accuracy of these predictions depends upon, amongst other things, a detailed knowledge of how temperature will change over time, rather than approximating this change to mean temperature.  相似文献   

10.
Mutational meltdown describes an eco‐evolutionary process in which the accumulation of deleterious mutations causes a fitness decline that eventually leads to the extinction of a population. Possible applications of this concept include medical treatment of RNA virus infections based on mutagenic drugs that increase the mutation rate of the pathogen. To determine the usefulness and expected success of such an antiviral treatment, estimates of the expected time to mutational meltdown are necessary. Here, we compute the extinction time of a population under high mutation rates, using both analytical approaches and stochastic simulations. Extinction is the result of three consecutive processes: (a) initial accumulation of deleterious mutations due to the increased mutation pressure; (b) consecutive loss of the fittest haplotype due to Muller''s ratchet; (c) rapid population decline toward extinction. We find accurate analytical results for the mean extinction time, which show that the deleterious mutation rate has the strongest effect on the extinction time. We confirm that intermediate‐sized deleterious selection coefficients minimize the extinction time. Finally, our simulations show that the variation in extinction time, given a set of parameters, is surprisingly small.  相似文献   

11.
Dynamics of speciation and diversification in a metapopulation   总被引:1,自引:0,他引:1  
We develop a simple framework for modeling speciation and diversification as a continuous process of accumulation of genetic (or morphological) differences accompanied by species and subpopulation extinction and/or range expansion. This framework can be used to approach a number of questions such as species-area distribution, species-range size distribution, the rate of ecological turnover, asymmetries of range division between sister species, waiting time until speciation and extinction, the relationship between the geographic range size and the probability of speciation, the relationships between subpopulation-level parameters and metapopulation-level parameters, and the effects of taxonomic level on these rates, distributions, and parameters. We illustrate some of these applications using numerical simulations. We develop approximations describing the dependence of the number of different taxonomic units, their average range size, and the rate of their turnover on the system size, the rate of fixation of genetic (or morphological) changes in local demes, and the rate of local extinction and colonization.  相似文献   

12.
《Mathematical biosciences》1987,83(1):105-125
An environmental process was characterized by a stationary second order autogressive process with Gaussian noise. This process was then linked to survivorship and reproductive success by logistic transformations. The sensitivity of extinction probabilities to variations in the parameters of the environmental process was studied by computer experiments in Monte Carlo integration. Against the background of the rather limited number of fertility and mortality levels studied in these experiments, the extinction probabilities were demonstrated to be quite sensitive to variations in the parameters of the environmental process. Although more extensive experiments will need to be carried out, those conducted so far suggest that concerted efforts should be made to model those environmental factors that are critical to the survivability of an endangered species in assessing its chances for continued existence.  相似文献   

13.
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications.  相似文献   

14.
Despite the recognized importance of stochastic factors, models for ecological invasions are almost exclusively formulated using deterministic equations [29]. Stochastic factors relevant to invasions can be either extrinsic (quantities such as temperature or habitat quality which vary randomly in time and space and are external to the population itself) or intrinsic (arising from a finite population of individuals each reproducing, dying, and interacting with other individuals in a probabilistic manner). It has been long conjectured [27] that intrinsic stochastic factors associated with interacting individuals can slow the spread of a population or disease, even in a uniform environment. While this conjecture has been borne out by numerical simulations, we are not aware of a thorough analytical investigation. In this paper we analyze the effect of intrinsic stochastic factors when individuals interact locally over small neighborhoods. We formulate a set of equations describing the dynamics of spatial moments of the population. Although the full equations cannot be expressed in closed form, a mixture of a moment closure and comparison methods can be used to derive upper and lower bounds for the expected density of individuals. Analysis of the upper solution gives a bound on the rate of spread of the stochastic invasion process which lies strictly below the rate of spread for the deterministic model. The slow spread is most evident when invaders occur in widely spaced high density foci. In this case spatial correlations between individuals mean that density dependent effects are significant even when expected population densities are low. Finally, we propose a heuristic formula for estimating the true rate of spread for the full nonlinear stochastic process based on a scaling argument for moments. Received: 19 October 1998 / Revised version: 1 September 1999 / Published online: 4 October 2000  相似文献   

15.
An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations. One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature when extinction was low. Under moderate extinction, both the [Formula: see text]-statistic and diversity-dependent models did not detect such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification have changed through time.  相似文献   

16.
The growth of populations which undergo large random fluctuations can be modelled with stochastic differential equations involving Poisson processes. The problem of determining the persistence time is that of finding the time of first passage to some small critical population size. We consider in detail a simple model of logistic growth with additive Poisson disasters of fixed magnitude. The expectation and variability of the persistence time are obtained as solutions of singular differential-difference equations. The dependence of the persistence time of a colonizing species on the parameters of the model is discussed. The model may also be viewed as random harvesting with fixed quotas and a comparison is made between the mean extinction time and those for deterministic models.  相似文献   

17.
The noble crayfish Astacus astacus L. is a threatened freshwater invertebrate. Many of the remaining populations are isolated and there is considerable concern that diseases and the increased frequency of flooding events may drive these remnant populations to extinction. We performed a population viability analysis for a typical isolated noble crayfish population. We quantified the extinction risk by the mean time to extinction within 1000 years for several scenarios (flooding events, restocking of adults). For a set of parameters derived from field estimates, we estimated the mean time to extinction to be 240 years. However, the median was only 80 years. Multiple sensitivity analysis by logistic regression revealed that spawning probability, juvenile and adult mortality were the important parameters for the survival of the population. The mean time to extinction decreased with increasing frequency of floodings. This is alarming, considering the magnitude of the effect and the expectation of an increasing number of floodings with global warming. Restocking, however, was found to have only a minor effect on the mean time to extinction. Overall, our simulations suggested that for the long-term and self-sustaining survival of the noble crayfish, particularly where they remain isolated, we have to improve the extent and quality of habitats. Nevertheless, additional measures are necessary, especially the removal of dispersal barriers to allow some exchange of individuals between populations. However, this also calls for a control of invasive crayfish species.  相似文献   

18.
An approximation is derived for the quasi-stationary distribution of the stochastic logistic epidemic in the intricate case where the transmission factor R0 lies in the transition region near the deterministic threshold value 1. An approximation for the expected time to extinction from quasi-stationarity in the same parameter region is also given.  相似文献   

19.
Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events.  相似文献   

20.
In this paper, we examine, for small metapopulations, the stochastic analog of the classical Levins metapopulation model. We study its basic model output, the expected time to metapopulation extinction, for systems which are brought out of equilibrium by imposing sudden changes in patch number and the colonization and extinction parameters. We find that the expected metapopulation extinction time shows different behavior from the relaxation time of the original, deterministic, Levins model. This relaxation time is therefore limited in value for predicting the behavior of the stochastic model. However, predictions about the extinction time for deterministically unviable cases remain qualitatively the same. Our results further suggest that, if we want to counteract the effects of habitat loss or increased dispersal resistance, the optimal conservation strategy is not to restore the original situation, that is, to create habitat or decrease resistance against dispersal. As long as the costs for different management options are not too dissimilar, it is better to improve the quality of the remaining habitat in order to decrease the local extinction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号