首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>NO广泛参与神经系统神经元细胞周期、生长分化及突触形成等过程。S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)作为神经元中蛋白亚硝基化的主要调控因子对学习和记忆功能有重要影响,然而其在神经元的分化及突触形成过程中的作用机制尚不清楚。前期研究显示,NO可介导神经生长因子(nerve growth factor,NGF)诱导的神经细胞系PC12的分化及大鼠初级皮层和海马神经元的分化。NO可能通过经典NO/c GMP信号通路或c GMP非依赖性途径,即S-亚硝基化发挥其对神经元的调控功能。  相似文献   

2.
一氧化氮(nitric oxide, NO)是有机体内一种重要的气体信号小分子,通过介导S-亚硝基化修饰、酪氨酸硝基化修饰等翻译后修饰,影响蛋白的稳定性和活性.在植物中, NO调控生长发育和胁迫响应等多个生物学过程,并与植物激素、活性氧等信号分子之间形成复杂的交互调控网络,精细调控植物生长发育的各阶段,以维持植物的正常生命活动.本文概述了NO的合成与代谢、作用机制,以及NO在植物生长发育、胁迫响应中的重要生物学功能.  相似文献   

3.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

4.
<正>一氧化氮(NO)作为近年来细胞信号转导通路中的明星分子,已被证实在多种细胞代谢及生理功能方面发挥着重要调控作用,其中一个主要调控机制即NO对蛋白质的S-亚硝基化修饰。S-亚硝基化指NO与靶蛋白酪氨酸残基相互作用并生成S-亚硝基(S-NO)基团的一种翻译后修饰。最近,德国体育大学分子细胞运动医学系的Marijke Grau等发现,红细胞中RBC-NOS合成的NO对红细胞骨架蛋白α-和β-血影蛋白有S-亚硝基化修饰作用,并能够提高红细胞变形能力。红细胞的变形性使其能够穿过口径狭小的毛细血管从而运载氧气到组织各处,变形性的下降可引起多种疾病。早期研  相似文献   

5.
一氧化氮(NO)在体内的传递并非以往认为的随机弥散,而是与血红蛋白(Hb)β亚单位中半胱氨酸的硫醇基(巯基)或其他含巯基化合物相结合,形成亚硝基硫醇(SNOs)。SNOs既具备NO的生物活性又保持其稳定性。SNOs从细胞外进入到胞质的途径是通过酶促反应,而从红细胞输出则经阴离子交换蛋白转运。在缺氧情况下,SNOs对呼吸的调控包括:Hb在肺部的氧合作用,将氧输送到组织和在脑干孤束核调控中枢性呼吸。  相似文献   

6.
王宇  何奕騉 《植物学报》2017,52(6):681-684
一氧化氮(NO)作为一种具有活性的小分子物质参与众多动植物生理活动。在蛋白转录后修饰方面,NO主要以S-亚硝基化(S-nitrosylation)的形式参与。而甲基化作为另一种蛋白翻译后修饰,在DNA损伤及m RNA翻译方面具有重要作用。虽然近年来有关这2种蛋白翻译后修饰方面的研究成果较多,但是2种途径之间是否存在相互作用却报道较少。近期,我国科学家发现NO可以通过S-亚硝基化修饰PRMT5的第125位半胱氨酸,正向调节该精氨酸甲基转移酶活性。prmt5-1突变体表现出严重的发育障碍且对非生物胁迫敏感。通过互补第125位半胱氨酸点突变PRMT5基因,使之转化为不可被S-亚硝基化修饰的氨基酸后,拟南芥(Arabidopsis thaliana)植株可恢复突变体的发育障碍,但无法恢复其非生物胁迫敏感表型。实验同时证明,PRMT5蛋白第125位半胱氨酸的S-亚硝基化修饰参与调节NaCl诱导的精氨酸对二甲基化。该研究引领了蛋白S-亚硝基化和蛋白甲基化修饰新方向,开辟了新的研究领域,同时为相关研究树立了新的榜样。  相似文献   

7.
<正>NO的产生在神经肌肉萎缩病变过程中有重要影响,然而其具体致病机制尚不清楚。最新研究显示,在年幼亚硝基化谷胱甘肽还原酶(GSNOR)敲除小鼠体内,蛋白质亚硝基化水平的升高会导致肌肉质量减少、肌纤维体积减少和神经病变,从而呈现神经肌肉萎缩表型。这项研究首次揭示GSNOR的缺陷所导致的蛋白质亚硝基化水平升高,而非硝基化水平升高,是引  相似文献   

8.
一氧化氮(NO)是一种易扩散的生物活性分子,是生物体内重要的信号分子。植物细胞通过NO合酶、硝酸还原酶、或非生化反应途径产生NO。NO参与植物生长发育调控和对生物与非生物环境胁迫的应答反应,大量证据表明NO是植物防御反应中的关键信使,其信号转导机制也受到越来越多的关注。本文主要通过讨论NO的产生、对植物生长周期的影响、在植物代谢中的信号调节以及参与细胞凋亡来阐述NO在植物中的作用。  相似文献   

9.
植物细胞一氧化氮信号转导研究进展   总被引:5,自引:0,他引:5  
一氧化氮(nitric oxide, NO)作为重要的信号分子, 调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程, 并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道, 精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基, 通过金属亚硝基化、巯基亚硝基化和Tyr-硝基化等化学修饰方式, 调节靶蛋白的活性, 并影响cGMP和Ca2+信使系统等下游信号途径, 调控相应的生理过程。最新的一些研究结果也显示, MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外, 作为活跃的小分子信号, NO和活性氧相互依赖并相互影响, 共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展, 对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

10.
S-亚硝基化是一种重要的蛋白质翻译后修饰方式, 是指一氧化氮(NO)基团共价连接至靶蛋白特定半胱氨酸残基的自由巯基, 从而形成S-亚硝基硫醇(SNO)的过程。S-亚硝基化修饰广泛存在于各有机体中, 通过改变蛋白质生化活性、稳定性、亚细胞定位以及蛋白质-蛋白质相互作用等机制而调控不同的生物学过程或信号通路。在蛋白质S-亚硝基化检测分析方法中, 最为广泛使用的是生物素转化法(biotin switch assay), 其基本原理是首先封闭未被修饰的自由巯基, 进而将被修饰的SNO基团特异地还原为自由巯基并使用生物素将其特异标记。被生物素标记的半胱氨酸残基(即被修饰位点)可进一步通过蛋白质免疫印迹和/或质谱等方法进行检测分析。该文详细描述了植物蛋白质样品的体内和体外生物素转化法的实验流程, 并对实验过程中的注意事项进行了讨论。  相似文献   

11.
一氧化氮(nitric oxide,NO)作为重要的信号分子,调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程,并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道,精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基,通过金属亚硝基化、巯基亚硝基化和Tyr.硝基化等化学修饰方式,调节靶蛋白的活性,并影响cGMP和Ca2+信使系统等下游信号途径,调控相应的生理过程。最新的一些研究结果也显示,MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外,作为活跃的小分子信号,NO和活性氧相互依赖并相互影响,共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展,对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

12.
NO在植物中的调控作用   总被引:13,自引:0,他引:13  
一氧化氮(NO)是一种易扩散的生物活性分子,是生物体内重要的信号分子.植物细胞通过NO合酶、硝酸还原酶、或非生化反应途径产生NO.NO参与植物生长发育调控和对生物与非生物环境胁迫的应答反应,大量证据表明NO是植物防御反应中的关键信使,其信号转导机制也受到越来越多的关注.本文主要通过讨论NO的产生、对植物生长周期的影响、在植物代谢中的信号调节以及参与细胞凋亡来阐述NO在植物中的作用.  相似文献   

13.
夏海威  施国新  黄敏  吴娟 《生态学报》2015,35(10):3139-3147
一氧化氮(NO)作为一种重要的信号分子,在调节植物重金属胁迫抗性方面上起着非常重要的作用。综述了NO在植物体内的产生途径,重金属胁迫下植物体内内源NO含量的变化以及外源NO与内源NO对植物重金属胁迫抗性的影响。大量研究表明外源NO能够增强植物对重金属胁迫的抗性,一方面是通过增强植物细胞的抗氧化系统或直接清除活性氧,另一方面是通过影响植物对重金属的吸收以及重金属在植物细胞内的分布。然而内源NO在调节植物重金属胁迫抗性上的功能角色仍存在争议。有些研究表明内源NO是有益的,能够缓解重金属胁迫诱导的毒性;但是也有证据表明内源NO是有害的,能够通过促进植物对重金属的吸收以及对植物螯合素进行S-亚硝基化弱化其解毒功能,从而参与重金属诱导的毒害反应和细胞凋亡过程。  相似文献   

14.
甲醛脱氢酶(FADH)属于中等锌链醇脱氢酶家族中的一员,存在于绝大多数原核生物以及所有的真核生物中,是微生物中主要用于甲醛解毒的酶。近年来一些研究确定甲醛脱氢酶还具有S-亚硝基谷胱甘肽还原酶(GSNOR)的活性,用于调节内源性NO的动态平衡。对微生物甲醛脱氢酶的结构,生理生化特性,基因克隆以及在环保上的应用方面进行综述。  相似文献   

15.
炎症因子的表达调控是炎症反应的关键步骤,与自身免疫疾病以及癌症等密切相关.一氧化氮(nitric oxide,NO)在炎症因子表达调控中具有重要作用,但已有的研究多关注于NO合成对炎症因子的调控作用,而对NO代谢的作用知之甚少.亚硝基化谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)是体内NO信号通路代谢调控的关键蛋白.本研究发现脂多糖(lipopolysaccharide,LPS)在RAW264.7细胞中上调诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的同时下调GSNOR的转录和蛋白质表达,该下调作用依赖MEK1/2、p38和PI3K信号通路.抑制GSNOR可促进LPS诱导的炎症因子IL-1β、IL-6和TNF-α表达,而过表达GSNOR作用相反.抗炎症药物曲古抑菌素A (trichostatin A,TSA)能够挽回LPS对GSNOR的下调作用,并且GSNOR抑制剂削弱了TSA对炎症因子IL-6和TNF-α转录的抑制效应.这些结果表明:GSNOR是一个新的重要炎症调控分子,它可能成为调控NO介导的炎症相关信号通路的新的潜在靶点,上调GSNOR可能是抑制炎症的新思路.本研究揭示了巨噬细胞通过上调iNOS和下调GSNOR共同增强免疫炎症反应的新机制,拓展了对NO代谢在炎症反应中作用机制的认识.  相似文献   

16.
S-亚硝基化是一种重要的蛋白质翻译后修饰方式, 是指一氧化氮(NO)基团共价连接至靶蛋白特定半胱氨酸残基的自由巯基, 从而形成S-亚硝基硫醇(SNO)的过程。S-亚硝基化修饰广泛存在于各有机体中, 通过改变蛋白质生化活性、稳定性、亚细胞定位以及蛋白质-蛋白质相互作用等机制而调控不同的生物学过程或信号通路。在蛋白质S-亚硝基化检测分析方法中, 最为广泛使用的是生物素转化法(biotin switch assay), 其基本原理是首先封闭未被修饰的自由巯基, 进而将被修饰的SNO基团特异地还原为自由巯基并使用生物素将其特异标记。被生物素标记的半胱氨酸残基(即被修饰位点)可进一步通过蛋白质免疫印迹和/或质谱等方法进行检测分析。该文详细描述了植物蛋白质样品的体内和体外生物素转化法的实验流程, 并对实验过程中的注意事项进行了讨论。  相似文献   

17.
一氧化氮在植物体内的来源和功能   总被引:10,自引:0,他引:10  
一氧化氮(nitric oxide,NO)是生物体内重要的活性分子。NO参与了动物体内血管松弛、神经传递及免疫防御反应等一系列生理功能而被认为是可扩散的多功能第二信使。在植物体内NO也是一种广泛存在的信号分子,参与调节了许多重要的生理过程如生长、发育、抗病防御反应、细胞程序性死亡和抗逆反应。对NO在植物体内的来源、信号转导、调节植物生长发育和对胁迫的响应方面所发挥的作用进行了综述,并讨论了其潜在的一些功能。  相似文献   

18.
线粒体是真核细胞的重要细胞器,在植物生长发育以及植物对逆境胁迫的响应方面起着重要的作用。除了线粒体呼吸系统蛋白如线粒体电子传递链(mETC)复合物、交替氧化酶(AOX)和解偶联蛋白(UCP),越来越多的线粒体蛋白如PPR、线粒体热激蛋白(HSC)、一氧化氮合酶相关蛋白(NOA)等被报道参与植物对逆境胁迫的调控过程。本文依次综述了参与植物逆境胁迫的呼吸系统蛋白、PPR蛋白、谷胱甘肽和谷氨酸蛋白酶类蛋白、分子伴侣相关蛋白等线粒体蛋白,并阐述了线粒体蛋白参与的胁迫种类及其分子调控的初步机制,为进一步揭示线粒体蛋白调控植物逆境胁迫的分子机制提供参考。  相似文献   

19.
制备了原位催化生成一氧化氮(NO)的新型仿生人工血管材料.固载有机硒催化剂的聚乙烯亚胺,作为NO供体催化剂,和海藻酸钠通过静电层层自组装交替结合到电纺聚已内酯基质的表面上.这种材料接触到NO供体—S-亚硝基谷胱甘肽时,显示了显著的催化释放NO的能力.在S-亚硝基硫醇存在的情况下,该材料可以抑制平滑肌细胞的黏附和铺展,同时促进内皮细胞的增殖.体外血小板黏附和动静脉分流实验显示这种材料具有良好的抗血栓性能,能够抑制血小板激活和聚集,预防急性血栓形成.该研究为提高人工血管的细胞功能和抗血栓性能提供一种新方法.  相似文献   

20.
硫化氢(H2S)是继一氧化氮(NO)和一氧化碳(CO)之后第3个气体信号分子, 在植物体内参与许多重要的生理活动, 能够促进植物光合作用和有机物的积累, 缓解各种生物和非生物胁迫并促进植物生长发育。该文综述了植物体内H2S的物理化学性质、产生机制、主要生理功能和作用机制以及与其它信号分子的互作关系, 并展望了H2S信号分子的研究前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号